Search published articles


Showing 2 results for Yousefi

M. Shahrouzi , A. Yousefi,
Volume 3, Issue 1 (3-2013)
Abstract

Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and its variant PSOPC with Passive Congregation as a recent meta-heuristic. In order to make further improvement an additional hybrid PSO with genetic algorithm is also proposed as PSOGA with the idea of taking benefit of various movement types in the search space. A number of benchmark examples are then treated by the algorithms. Consequently, PSOGA stood superior to the others in effectiveness giving the best results while PSOPC had more efficiency and the least fit ones belonged to the Standard PSO.
F. Maleki, M. Yousefikhoshbakht,
Volume 9, Issue 2 (4-2019)
Abstract

The open vehicle routing problem (OVRP) is a variance of the vehicle routing problem (VRP) that has a unique character which is its open path form. This means that the vehicles are not required to return to the depot after completing service. Because this problem belongs to the NP-hard problems, many metaheuristic approaches like the ant colony optimization (ACO) have been used to solve OVRP in recent years. The versions of ACO have some shortcomings like its slow computing speed and local-convergence. Therefore, in this paper, we present an efficient hybrid elite ant system called EHEAS in which a new state transition rule, tabu search as an effective local search algorithm and a new pheromone updating rule are used for more improving solutions. These modifications avoid the premature convergence and make better solutions. Computational results on sixteen standard benchmark problem instances show that the proposed algorithm finds closely the best known solutions for most of the instances in which ten best known solutions are also found. In addition, EHEAS is comparable in terms of solution quality to the best performing published metaheuristics.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb