Search published articles

Showing 2 results for Bahadori

H. Bahadori , M. S. Momeni,
Volume 6, Issue 3 (9-2016)

Shear wave velocity (Vs) is known as one of the fundamental material parameters which is useful in dynamic analysis. It is especially used to determine the dynamic shear modulus of the soil layers. Nowadays, several empirical equations have been presented to estimate the shear wave velocity based on the results from Standard Penetration Test (SPT) and soil type. Most of these equations result in different estimation of Vs for the same soils. In some cases a divergence of up to 100% has been reported. In the following study, having used the field study results of Urmia City and Artificial Neural Networks, a new correlation between Vs and several simple geotechnical parameters (i.e. Modified SPT value number (N60), Effective overburden stress, percentage of passing from Sieve #200 (Fc), plastic modulus (PI) and mean grain size (d50)) is presented. Using sensitivity analysis it is been shown that the effect of PI in Vs prediction is more than that of N60 in over consolidated clays. It is also observed that Fc has a high influence on evaluation of shear wave velocity of silty soils.

Gh. Asadzadeh Khoshemehr , H. Bahadori,
Volume 9, Issue 3 (6-2019)

Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the seismic response of a site. Therefore, Artificial Neural Networks (ANNs) are reliable and practical estimation methods that can be used to analyze comprehensive measurements such as dominant period of a site, and improve the data. In this paper, the performance of ANNs has been investigated on calculation of the dominant period for a site. Three different models, namely BP, RBF and ANFIS, have been compared to determine the best model that provides the most accurate estimation for the dominant period. The input parameters have been chosen to be alluvial layer thickness, grain size, specific gravity, effective stress, shear wave velocity, standard penetration number, Atterberg limits. Each of the three models has been trained and tested for these input parameters and a unique output which is the dominant period of the site. The results showed that ANNs successfully model complex relationships between soil parameters and seismic parameters of the site, and provide a robust tool to accurately estimate the dominant period of a site. The accurate estimations can be then used for engineering applications including damage assessment and structural health monitoring. In addition, The obtained emulator of RBF model shows the least model error in estimation of dominant period and has been found to be superior to the other evaluated methods.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb