Search published articles

Showing 3 results for Akbarpour

M. Khatibinia, H. Chiti, A. Akbarpour , H. R. Naseri,
Volume 6, Issue 1 (1-2016)

This study focuses on the shape optimization of concrete gravity dams considering dam–water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prager model based on the associated flow rule is adopted in this study. The optimum design of concrete gravity dams is achieved by the hybrid of an improved gravitational search algorithm (IGSA) and the orthogonal crossover (OC), called IGSA–OC. In order to reduce the computational cost of optimization process, the support vector machine approach is employed to approximate the dam response instead of directly evaluating it by a time–consuming finite element analysis. To demonstrate the nonlinear behavior of concrete material in the optimum design of concrete gravity dams, the shape optimization of a real dam is presented and compared with that of dam considering linear effect.
H. Chiti, M. Khatibinia, A. Akbarpour , H. R. Naseri,
Volume 6, Issue 3 (9-2016)

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity dams subjected to earthquake load using subset simulation. The optimization problem is formulated such that the optimal shape of concrete gravity dam described by a number of variables is found by minimizing the total cost of concrete gravity dam for the given target reliability. In order to achieve this purpose, a framework is presented whereby subset simulation is integrated with a hybrid optimization method to solve the RBDO approach of concrete gravity dam. Subset simulation with Markov Chain Monte Carlo (MCMC) sampling is utilized to estimate accurately the failure probability of dams with a minimum number of samples. In this study, the concrete gravity dam is treated as a two–dimensional structure involving the material nonlinearity effects and dam–reservoir–foundation interaction. An efficient metamodel in conjunction with subset simulation–MCMC is provided to reduce the computational cost of dynamic analysis of dam–reservoir–foundation system. The results demonstrate that the RBDO approach is more appropriate than the deterministic optimum approach for the optimal shape design of concrete gravity dams.

N. Majidi Khalilabad, M. Mollazadeh, A. Akbarpour , S. Khorashadizadeh,
Volume 8, Issue 2 (8-2018)

Leakage detection in water distribution systems play an important role in storage and management of water resources. Therefore, to reduce water loss in these systems, a method should be introduced that reacts rapidly to such events and determines their occurrence time and location with the least possible error. In this study, in order to determine position and amount of leakage in distribution system, a detection method based on hydraulic model was evaluated using Extended Kalman Filter (EKF), which is a non-linear Kalman Filter. The results indicated that the method was well able to predict leakage position and its amount. Using a numerical model, a leakage was placed in 25.4 m distance of its upstream, amounting to 1.33 lit/sec which was equal to 10 percent of overall flow. The calculated mean position and leakage value by EKF were 27.17 m and 1.11 lit/sec, respectively.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb