Search published articles


Showing 9 results for Metaheuristics

A. Kaveh, M. Kalateh-Ahani, M.s. Masoudi,
Volume 1, Issue 2 (6-2011)
Abstract

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimization problems, is employed for size optimization of steel space trusses. Design examples reveal competitive performance of the algorithm compared to the other advanced metaheuristics.
S. Kazemzadeh Azad, O. Hasançebi, O. K. Erol,
Volume 1, Issue 3 (9-2011)
Abstract

Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers to utilize such techniques in their applications. Big- Bang Big-Crunch (BB-BC) algorithm is a simple metaheuristic optimization method emerged from the Big Bang and Big Crunch theories of the universe evolution. The present study is an attempt to evaluate the efficiency of this algorithm in solving engineering optimization problems. The performance of the algorithm is investigated through various benchmark examples that have different features. The obtained results reveal the efficiency and robustness of the BB-BC algorithm in finding promising solutions for engineering optimization problems.
O. Hasançebi, S. Kazemzadeh Azad,
Volume 2, Issue 4 (10-2012)
Abstract

Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependency on few parameters only are among the advantageous characteristics of the proposed SOPT algorithm. The efficiency of the developed algorithm is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.
H. Eskandar, A. Sadollah , A. Bahreininejad,
Volume 3, Issue 1 (3-2013)
Abstract

Water cycle algorithm (WCA) is a new metaheuristic algorithm which the fundamental concepts of WCA are derived from nature and are based on the observation of water cycle process and how rivers and streams flow to sea in the real world. In this paper, the task of sizing optimization of truss structures including discrete and continues variables carried out using WCA, and the optimization results were compared with other well-known optimizers. The obtained statistical results show that the WCA is able to provide faster convergence rate and also manages to achieve better optimal solutions compared to other efficient optimizers.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract

In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.


A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 4 (10-2020)
Abstract

In this paper, set theoretical variants of the artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are designed based on a set theoretical framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. The framework aims to improve the compromise between diversification and intensification of the search and makes it possible to design various variants of a P-metaheuristic. In order to verify the stability and robustness of the set theoretical framework, the proposed algorithms are applied to solve three different benchmark structural design optimization problems. The results show that the set theoretical framework improves the performance of the ABC and WEO algorithms, especially in terms of robustness and convergence characteristics.
A. H. Salarnia, M. R. Ghasemi,
Volume 11, Issue 3 (8-2021)
Abstract

Pedestrian bridge is a structure constructed to maintain the safety of citizens in crowded and high-traffic areas. With the expansion of cities and the increase in population, the construction of bridges is necessary for easier and faster transportation, as well as the safety of pedestrians and vehicles. In this article, it is decided to consider the most economical cross-sections for these bridges according to the design regulations and codes of Practice in order to achieve the minimum weight, which will ultimately reduce the cost of construction and production and the usage of less resources. For this purpose, new GSS-PSO algorithm has been used and its results have been compared with GA and PSO algorithms, by the means of which an enhancement of PSO algorithm is seen. This enhancement on the conventional PSO technique reduces the search space more desirably and swiftly to a space close to the global optimum point. This algorithm has been implemented with MATLAB mathematical software and has been integrated with SAP2000v22 structural design software for analysis and optimum design under resistance and displacement constraints. The final results of the analyses are compared with an already designed and implemented infrastructure. In addition to a bridge optimization, a bench-mark frame optimization was also used in order for a better comparison between this algorithm and the other ones.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad,
Volume 11, Issue 4 (11-2021)
Abstract

The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic optimization algorithm that simulates the distribution characteristics of the four basic arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been successfully applied to solve some optimization problems. However, the AOA suffers from poor exploration and prematurely converges to non-optimal solutions, especially when dealing with multi-dimensional optimization problems. More recently, in order to overcome the shortcomings of the original AOA, an improved version of AOA, named IAOA, has been proposed and successfully applied to discrete structural optimization problems. Compared to the original AOA, two major improvements have been made in IAOA: (1) The original formulation of the AOA is modified to enhance the exploration and exploitation capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the optimal design of large-scale dome-like truss structures with multiple frequency constraints. To the best of our knowledge, this is the first time that IAOA is applied to structural optimization problems with frequency constraints. Three benchmark dome-shaped truss optimization problems with frequency constraints are investigated to demonstrate the efficiency and robustness of the IAOA. Experimental results indicate that IAOA significantly outperforms the original AOA and achieves results comparable or superior to other state-of-the-art algorithms.
A. Kaveh, S. M. Hosseini,
Volume 12, Issue 3 (4-2022)
Abstract

Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm is applied to solve the discrete and continuous optimization problems of the truss structures subject to multiple loading conditions and design constraints. DE-MEDT algorithm is a recently proposed metaheuristic developed based on a physical phenomenon called Doppler Effect (DE) with some idealized rules and a mechanism called Mean Euclidian Distance Threshold (MEDT). The efficiency of the DE-MEDT algorithm is evaluated by optimizing five large-scale truss structures with continuous and discrete variables. Comparing the results found by the DE-MEDT algorithm with those of other existing metaheuristics reveals that the DE-MEDT optimizer is a suitable optimization technique for discrete and continuous design optimization of large-scale truss structures.
 

Page 1 from 1     

© 2022 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb