Search published articles

Showing 2 results for Mohammadizadeh

M.r. Mohammadizadeh, E. Jahanfekr, S. Shojaee,
Volume 10, Issue 4 (10-2020)

The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SOLMA). Using the acceleration response in a number of structural nodes under dynamic excitation, identification of the location and extent of damage in the plate elements are obtained by the proposed algorithm over an iterative cycle and by updating the sensitivity matrix. The damage has been assumed in the form of decreased modulus of elasticity in linear mode. A numerical problem has been solved and presented in order to verify and compare the proposed damage detection method with other methods. Also several numerical problems have been solved and its results have been presented in order to evaluate different scenarios such as one or more damages, small or large damage extent, absence or presence of noise with different levels, number of measured responses (number of sensors), position of measured points and the dynamic analysis time of the damage detection problem with the proposed method. The results show the appropriate accuracy, efficiency and performance of the proposed damage detection method.
M. Ramezani, M. R. Mohammadizadeh, S. Shojaee,
Volume 13, Issue 2 (4-2023)

In recent years, there has been a lot of interest in the development and deployment of control methods that use different components of the building to mitigate the seismic response of the structure. Meanwhile, the building facade, as a non-structural component, can be a suitable alternative in affecting the structure's behavior because of its role as an envelope of the building with a significant weight. Among the modular cladding systems, the Double Skin Facade (DSF) can be considered a passive system due to the distance of the exterior layer from the main structure and sufficient continuity and rigidity.  In this study, DSF systems are used as Peripheral Mass Dampers (PMDs) that control structural movements by dissipating energy during strong motions. The PMD system provides a building with several inherent dampers without the need for extra mass. To show the reliability and efficiency of the proposed approach, the PMD model is investigated and compared with results available in uncontrolled and Tuned Mass Damper (TMD) models. The PMD model is examined in three structural frames with 10, 20, and 30 stories with the extreme Mass Ratios (MRs) of 5% to 20%. The Particle Swarm Optimization (PSO) is performed on damper parameters of PMD and TMD systems to minimize structural responses. The results demonstrate that an optimal PMD system with multiple inherent mass dampers outperforms a single TMD system.

Page 1 from 1     

© 2023 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb