Search published articles

Showing 11 results for Time History Analysis

A. Kaveh, O. Khadem Hosseini, S. Mohammadi, V. R Kalat Jari, A. Keyhani,
Volume 4, Issue 4 (11-2014)

M. Yazdanian, S. Ghasemi,
Volume 7, Issue 4 (10-2017)

Impulsive and convective frequencies are one of the most important subjects for evaluation of the seismic behavior of tanks. These two frequencies are defined by Housner and used for obtaining Rayleigh damping in time history analysis. ACI 350 and NZSEE standards have suggested some analytical solutions for finding convective and impulsive frequencies. These frequencies can also extract from modal analysis by finite element (FE) software. In current study, these frequencies are extracted by using FE software and performing modal analysis. Also these modes are compared with analytical methods from ACI and NZSEE standards. Based on the results, convective frequencies obtained from FE and ACI and NZSEE methods are so close together, with just two percent variation between FE and analytical codes, while there are significant differences among these methods for impulsive frequencies. Furthermore, this study shows that the wall thickness has no effect on the convective frequencies, while it is completely opposite for impulsive frequency. When the wall thickness rises by 1.5 times, impulsive frequencies increase by 1.75, 1.55 and 1.48 times for finite element, NZSEE and ACI methods, respectively. In addition, based on the observations, when the liquid height is low, NZSEE method presents high values of impulsive frequency.

A. Gholizad, S. Eftekhar Ardabili,
Volume 8, Issue 4 (10-2018)

The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative approach is proposed to generate near-fault pulse-like ground motions. A smoothening approach is taken to extract directivity pulses from an ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing directivity pulse on the previously generated nonpulse-type motion. The main objective of this study is to generate near-field spectrum compatible records. Particle Swarm Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce the dimension of ANFIS input vectors. Artificial records are generated for the first, second and third level of wavelet packet decomposition. Finally, a number of interpretive examples are presented to show how the method works. The results show that the response spectra of generated records are decently compatible with the target near-field spectrum, which is the main objective of the study.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb