Search published articles


Showing 48 results for Truss

Ali Kaveh, Siamak Talatahari,
Volume 1, Issue 1 (3-2011)
Abstract

Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence of tasks entailed by the optimization process is changed so that the updating of the design variables can directly be performed after each movement. In this way, the new method acts as a single-agent algorithm while preserving the positive characteristics of its original multi-agent formulation.
Hossein Rahami, Ali Kaveh, M. Aslani, R. Najian Asl,
Volume 1, Issue 1 (3-2011)
Abstract

In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a large number of variables and constraints are chosen to show the robustness of the algorithm.
O. Hasançebi, S. Çarbaş,
Volume 1, Issue 1 (3-2011)
Abstract

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with practical design considerations. Both examples are formulated according to provisions of ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution) specification. The results obtained are used to discuss the computational characteristics of ACO for optimum design of truss type structures.
K.s. Lee, S.w. Han, Z.w. Geem,
Volume 1, Issue 1 (3-2011)
Abstract

Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discrete sizing variables and integrated discrete sizing and continuous geometric variables. The HS algorithm uses a stochastic random search instead of a gradient search so the former has a new-paradigmed derivative. Several truss examples from the literature are also presented to demonstrate the effectiveness and robustness of the new method, as compared to current optimization methods.
A. Kaveh, M. Kalateh-Ahani, M.s. Masoudi,
Volume 1, Issue 2 (6-2011)
Abstract

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimization problems, is employed for size optimization of steel space trusses. Design examples reveal competitive performance of the algorithm compared to the other advanced metaheuristics.
S. Shojaee, S. Hasheminasab,
Volume 1, Issue 2 (6-2011)
Abstract

Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the convergence and robustness of a metaheuristic algorithm. Random initial sampling, Latin Hypercube Design, Sobol sequence, Hammersley and Halton sequences are employed for approximating initial design. Comparative studies demonstrate that well distributed initial sampling speeds up the convergence to near optimal design and reduce the required computational cost of purely random sampling methodologies. In addition different penalty functions that define the Augmented Lagrangian methods considered in this paper to improve the algorithms. Some examples presented to show these applications.
S. Kazemzadeh Azad, S. Kazemzadeh Azad ,
Volume 1, Issue 2 (6-2011)
Abstract

Nature-inspired search algorithms have proved to be successful in solving real-world optimization problems. Firefly algorithm is a novel meta-heuristic algorithm which simulates the natural behavior of fireflies. In the present study, optimum design of truss structures with both sizing and geometry design variables is carried out using the firefly algorithm. Additionally, to improve the efficiency of the algorithm, modifications in the movement stage of artificial fireflies are proposed. In order to evaluate the performance of the proposed algorithm, optimum designs found are compared to the previously reported designs in the literature. Numerical results indicate the efficiency and robustness of the proposed approach.
A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, C. Farahmandpour,
Volume 1, Issue 3 (9-2011)
Abstract

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an optimal manner and to direct the agents toward the best regions, resulting in possible reduction of the number of particles. To show the computational advantages of the new PSO-SA method, some benchmark numerical examples are studied. The PSO-SA algorithm converges to better or at least the same solutions, while the number of structural analyses is significantly reduced
S. Gholizadeh, A. Barzegar , Ch. Gheyratmand,
Volume 1, Issue 3 (9-2011)
Abstract

The main aim of the present study is to propose a modified harmony search (MHS) algorithm for size and shape optimization of structures. The standard harmony search (HS) algorithm is conceptualized using the musical process of searching for a perfect state of the harmony. It uses a stochastic random search instead of a gradient search. The proposed MHS algorithm is designed based on elitism. In fact the MHS is a multi-staged version of the HS and in each stage a new harmony memory is created using the information of the previous stages. Numerical results reveal that the proposed algorithm is a powerful optimization technique with improved exploitation characteristics compared with the standard HS.
A. Kaveh, M. Hassani,
Volume 1, Issue 4 (12-2011)
Abstract

In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains the formulation of the complementary energy of truss and frame structures for the purpose of linear analysis. In the second part material and geometric nonlinearity of structure is considered using Ramberg-Osgood relationships. In the last part optimal simultaneous analysis and design of structure is studied. In each part, the efficiency of the methods is illustrated by means simple examples.
S. Kazemzadeh Azad , S. Kazemzadeh Azad, A. Jayant Kulkarni,
Volume 2, Issue 1 (3-2012)
Abstract

The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in the design space. The standard deviation of design variables is used as a key factor in the adaptation of mutation operators. The reliability of the proposed algorithm is investigated in typical sizing and layout optimization problems with both discrete and continuous design variables. The numerical results clearly indicated the competitiveness of MBRCGA in comparison with previously presented methods in the literature.
A. Csébfalvi,
Volume 2, Issue 1 (3-2012)
Abstract

This paper provides a test method to make a fair comparison between different heuristics in structure optimization. When statistical methods are applied to the structural optimization (namely heuristics or meta-heuristics with several tunable parameters and starting seeds), the "one problem - one result" is extremely far from the fair comparison. From statistical point of view, the minimal requirement is a so-called "small-sample" according to the fundamental elements of the theory of the experimental design and evaluation and the protocol used in the drug development processes. The viability and efficiency of the proposed statistically correct methodology is demonstrated using the well-known ten-bar truss on a set of the heuristics from the brutal-force-search up to the most sophisticated hybrid approaches.
D.a. de Souza Junior, F.a.r. Gesualdo , Lívia M. P. Ribeiro,
Volume 2, Issue 2 (6-2012)
Abstract

This paper presents the study of the optimized bi-dimensional wood structures, truss type, applying the method of genetic algorithms. Assessment is performed by means of a computer program called OPS (Optimization of Plane Structures). The purpose is to meet the optimum geometric configuration taking into account the volume reduction. Different strategies are considered for the positioning of diagonals and struts in the upper chord. It is concluded that the trussed system efficiency depends on the dimensions and the position of the members, where the purlin’s location is not mandatory for struts and diagonal positions.
S. Gholizadeh, H. Barati,
Volume 2, Issue 3 (7-2012)
Abstract

In the present study, the computational performance of the particle swarm optimization (PSO) harmony search (HS) and firefly algorithm (FA), as popular metaheuristics, is investigated for size and shape optimization of truss structures. The PSO was inspired by the social behavior of organisms such as bird flocking. The HS imitates the musical performance process which takes place when a musician searches for a better state of harmony, while the FA was based on the idealized behavior of the flashing characteristics of natural fireflies. These algorithms were inspired from different natural sources and their convergence behavior is focused in this paper. Several benchmark size and shape optimization problems of truss structures are solved using PSO, HS and FA and the results are compared. The numerical results demonstrate the superiority of FA to HS and PSO.
S.k. Zeng, L.j. Li,
Volume 2, Issue 4 (10-2012)
Abstract

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discrete variables and is tested by truss optimization problems. The optimization results are compared with that of the HPSO and GSO algorithm. The results show that the PS-GSO is able to accelerate the convergence rate effectively and has the fastest convergence rate among these three algorithms. The research shows the proposed PS-GSO algorithm can be effectively applied to optimal design of spatial structures with discrete variables.
S. Talatahari, M. Nouri, F. Tadbiri,
Volume 2, Issue 4 (10-2012)
Abstract

Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements imposed by design codes. In this paper, artificial bee colony algorithm (ABC) is utilized to optimize different skeletal structures. The results of the ABC are compared with the results of other optimization algorithms from the literature to show the efficiency of this technique for structural design problems.
S. Beygzadeh, E. Salajegheh, P. Torkzadeh, J. Salajegheh, S.s. Naseralavi,
Volume 3, Issue 1 (3-2013)
Abstract

In this study, efficient methods for optimal sensor placement (OSP) based on a new geometrical viewpoint for damage detection in structures is presented. The purpose is to minimize the effects of noise on the damage detection process. In the geometrical viewpoint, a sensor location is equivalent to projecting the elliptical noise on to a face of response space which is corresponding to the sensor. The large diameters of elliptical noise make the damage detection process problematic. To overcome this problem, the diameters of the elliptical noise are scaled by filter factor to obtain an elliptical called equivalent elliptical noise. Based on the geometrical viewpoint, six simple forward algorithms are introduced to find the OSP. To evaluate the merits of the proposed method, a two-dimensional truss, under both static and dynamic loads, is studied. Numerical results demonstrate the efficiency of the proposed method.
S. Shojaee, M. Arjomand, M. Khatibinia,
Volume 3, Issue 1 (3-2013)
Abstract

An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the results of MMA are used in IDPSO to optimize the cross-section areas. The results show that the hybrid of IDPSO and MMA can effectively accelerate the convergence rate and can quickly reach the optimum design.
H. Eskandar, A. Sadollah , A. Bahreininejad,
Volume 3, Issue 1 (3-2013)
Abstract

Water cycle algorithm (WCA) is a new metaheuristic algorithm which the fundamental concepts of WCA are derived from nature and are based on the observation of water cycle process and how rivers and streams flow to sea in the real world. In this paper, the task of sizing optimization of truss structures including discrete and continues variables carried out using WCA, and the optimization results were compared with other well-known optimizers. The obtained statistical results show that the WCA is able to provide faster convergence rate and also manages to achieve better optimal solutions compared to other efficient optimizers.
M. Shahrouzi , A. Yousefi,
Volume 3, Issue 1 (3-2013)
Abstract

Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and its variant PSOPC with Passive Congregation as a recent meta-heuristic. In order to make further improvement an additional hybrid PSO with genetic algorithm is also proposed as PSOGA with the idea of taking benefit of various movement types in the search space. A number of benchmark examples are then treated by the algorithms. Consequently, PSOGA stood superior to the others in effectiveness giving the best results while PSOPC had more efficiency and the least fit ones belonged to the Standard PSO.

Page 1 from 3    
First
Previous
1
 

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb