Search published articles

Showing 10 results for Minimum Weight

O. Hasançebi, S. Çarbaş,
Volume 1, Issue 1 (3-2011)

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with practical design considerations. Both examples are formulated according to provisions of ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution) specification. The results obtained are used to discuss the computational characteristics of ACO for optimum design of truss type structures.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)

This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
M. Grigorian ,
Volume 3, Issue 3 (9-2013)

This study was prompted by the need to elaborate on recent developments in plastic design of, parallel chord Vierendeel girders (VG). The paper proposes exact, general solutions to two novel classes of VG under practical loading conditions, a-VG of uniform section, where the chords and the verticals may be composed of two different prismatic sections, and b-VG of uniform strength, where the constituent elements are selected in such a way as to induce a state of equal stress for all members of the structure. It has been shown that the total weight of both classes of VG can be minimized by the proper selection of the relative strengths of the members of each system. The essence of the paper is based on a novel failure mechanism presented for the first time in this article. It has been shown that racking moments can be utilized to conduct spot checks on final solutions. Several generic examples have been provided to demonstrate the applications and the validity of the proposed solutions.
L. J. Li, Z. H. Huang,
Volume 4, Issue 2 (6-2014)

This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tabu search and a crowded distance operator. Two objective optimization problems, the minimum weight and maximum fundamental frequency, of four truss structures were optimized using the IMGSO. The results show that IMGSO rapidly generates the non-dominated set and is able to handle constraints. The Pareto front of the solutions from IMGSO is clearly dominant and has good diversity.
A. Kaveh , V.r. Mahdavi,
Volume 4, Issue 4 (11-2014)

In this paper, optimal design of arch dams is performed under frequency limitations. Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization method, which has been successfully applied to several structural problems, is revised and utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived from one-dimensional collisions between bodies, where each agent solution is considered as the massed object or body. The design procedure aims to obtain minimum weight of arch dams subjected to natural frequencies, stability and geometrical limitations. Two arch dam examples from the literature are examined to verify the suitability of the design procedure and to demonstrate the effectiveness and robustness of the CBO in creating optimal design for arch dams. The results of the examples show that CBO is a powerful method for optimal design of arch dams.
M. J. Esfandiary, S. Sheikholarefin, H. A. Rahimi Bondarabadi,
Volume 6, Issue 2 (6-2016)

Structural  design  optimization  usually  deals  with  multiple  conflicting  objectives  to  obtain the minimum construction cost, minimum weight, and maximum safety of the final design. Therefore, finding the optimum design is hard and time-consuming for  such problems.  In this paper, we borrow the basic concept of multi-criterion decision-making and combine it with  Particle  Swarm  Optimization  (PSO)  to  develop  an  algorithm  for  accelerating convergence  toward  the  optimum  solution  in  structural  multi-objective  optimization scenarios.  The effectiveness of the proposed algorithm was illustrated in some benchmark reinforced concrete (RC) optimization problems. The main goal was to minimize the cost or weight of structures while satisfying all design requirements imposed by design codes.  The results confirm the ability of the proposed algorithm to efficiently find optimal solutions for structural optimization problems.

L. Stupishin, K. Nikitin, A. Kolesnikov , F. Altuhov,
Volume 7, Issue 2 (3-2017)

The paper is concerned with a methodology of optimal design of shells of minimum weight with strength, stability and strain constraints. Stress and strain state of the shell is determined by Galerkin method in the mixed finite element formulation within the geometrically nonlinear theory. The analysis of the effectiveness of different optimization algorithms to solve the set problem is given. The results of solving test problems are presented.

S. A. Hosseini, A. Zolghadr,
Volume 7, Issue 4 (10-2017)

Offshore jacket-type towers are steel structures designed and constructed in marine environments for various purposes such as oil exploration and exploitation units, oceanographic research, and undersea testing. In this paper a newly developed meta-heuristic algorithm, namely Cyclical Parthenogenesis Algorithm (CPA), is utilized for sizing optimization of a jacket-type offshore structure. The algorithm is based on some key aspects of the lives of aphids as one of the highly successful organisms, especially their ability to reproduce with and without mating. The optimal design procedure aims to obtain a minimum weight jacket-type structure subjected to API-RP 2A-WSD specifications. SAP2000 and its Open Application Programming Interface (OAPI) feature are utilized to model the jacket-type structure and the corresponding loading. The results of the optimization process are then compared with those of Particle Swarm Optimization (PSO) and its democratic version (DPSO).

N. Khaledy, A. R. Habibi, P. Memarzadeh,
Volume 9, Issue 1 (1-2019)

Design of blast resistant structures is an important subject in structural engineering, attracting the attention of governments, researchers, and engineers. Thus, given the benefits of optimization in engineering, development and assessment of optimization methods for optimum design of structures against blast is of great importance. In this research, multi-objective optimization of steel moment frames subjected to blast is investigated. The considered objectives are minimization of the structural weight and minimization of the maximum inter-story drifts. The minimization of weight is related to obtain low cost designs and the minimization of inter-story drifts is related to obtain higher performance designs. By proposing a design methodology, a framework is developed for solving numerical problems. The developed framework is constructed by combining explicit finite element analysis of the structure and the NSGA-II optimization algorithm. The applicability and efficiency of the proposed method is shown through two numerical examples.
A. Hajishabanian, K. Laknejadi, P. Zarfam,
Volume 9, Issue 4 (9-2019)

One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this study, a new procedure developed for incorporating two important sources of uncertainties in design optimization process of steel moment resisting frames, is proposed. The first source is related to the connection parameter uncertainties and the second one to seismic demand uncertainty. Additionally Mont Carlo (MC) simulation and a variance reduction technique (VRT) are utilized to deal with uncertainties and to reduce the corresponding computational cost. In the proposed procedure two design objectives are considered, which are structural weight and collapse prevention reliability index for a moment resisting frame in such a way that leads to a set of optimum designs with minimum weight and less possible amounts of sensitivity to connection parameters uncertainties and spectral acceleration uncertainty as seismic demand variation. Additionally, in this procedure the reliability index is computed considering all FEMA-356 performance acceptance criteria, the approach that has never been investigated in other studies. The efficiency of this approach is illustrated by exhibiting a set of optimum designs, in the form of both objective values and investigating nonlinear behavior of optimum designs compared with non-optimum designs. This procedure is introduced in this paper with emphasize on the collapse limit state and applying pushover analysis for studying the nonlinear behavior of structural elements.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb