Search published articles


Showing 2 results for Leak Detection

M. H. Ranginkaman, A. Haghighi, H. M. Vali Samani,
Volume 6, Issue 1 (1-2016)
Abstract

Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is measured. Using the Fast Fourier Transform (FFT) the measured signal is transferred into the frequency domain. Besides, using the transfer matrix method, a frequency response analysis model for the pipeline is developed as a function of the leak parameters including the number, location and size of leaks. This model predicts the frequency responses of the pipe in return for any random set of leak parameters. Then, a nonlinear inverse problem is defined to minimize the discrepancies between the observed and predicted responses at the valve location. To find the pipeline leaks the method of Particle Swarm Optimization (PSO) is coupled to the transient analysis model while, the leak parameters are the optimization decision variables. The model is successfully applied against an example pipeline and in both terms of efficiency and reliability the results are satisfactory.
N. Majidi Khalilabad, M. Mollazadeh, A. Akbarpour , S. Khorashadizadeh,
Volume 8, Issue 2 (8-2018)
Abstract

Leakage detection in water distribution systems play an important role in storage and management of water resources. Therefore, to reduce water loss in these systems, a method should be introduced that reacts rapidly to such events and determines their occurrence time and location with the least possible error. In this study, in order to determine position and amount of leakage in distribution system, a detection method based on hydraulic model was evaluated using Extended Kalman Filter (EKF), which is a non-linear Kalman Filter. The results indicated that the method was well able to predict leakage position and its amount. Using a numerical model, a leakage was placed in 25.4 m distance of its upstream, amounting to 1.33 lit/sec which was equal to 10 percent of overall flow. The calculated mean position and leakage value by EKF were 27.17 m and 1.11 lit/sec, respectively.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb