Search published articles


Showing 40 results for Optimum Design

Saeed Gholizadeh, Seyed Mohammad Seyedpoor,
Volume 1, Issue 1 (3-2011)
Abstract

An efficient methodology is proposed to find optimal shape of arch dams on the basis of constrained natural frequencies. The optimization is carried out by virtual sub population (VSP) evolutionary algorithm employing real values of design variables. In order to reduce the computational cost of the optimization process, the arch dam natural frequencies are predicted by properly trained back propagation (BP) and wavelet back propagation (WBP) neural networks. The WBP network provides better generalization compared with the standard BP network. The numerical results demonstrate the computational merits of the proposed methodology for optimum design of arch dams.
Ali Kaveh, Siamak Talatahari,
Volume 1, Issue 1 (3-2011)
Abstract

Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence of tasks entailed by the optimization process is changed so that the updating of the design variables can directly be performed after each movement. In this way, the new method acts as a single-agent algorithm while preserving the positive characteristics of its original multi-agent formulation.
O. Hasançebi, S. Çarbaş,
Volume 1, Issue 1 (3-2011)
Abstract

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with practical design considerations. Both examples are formulated according to provisions of ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution) specification. The results obtained are used to discuss the computational characteristics of ACO for optimum design of truss type structures.
S. Kazemzadeh Azad, S. Kazemzadeh Azad ,
Volume 1, Issue 2 (6-2011)
Abstract

Nature-inspired search algorithms have proved to be successful in solving real-world optimization problems. Firefly algorithm is a novel meta-heuristic algorithm which simulates the natural behavior of fireflies. In the present study, optimum design of truss structures with both sizing and geometry design variables is carried out using the firefly algorithm. Additionally, to improve the efficiency of the algorithm, modifications in the movement stage of artificial fireflies are proposed. In order to evaluate the performance of the proposed algorithm, optimum designs found are compared to the previously reported designs in the literature. Numerical results indicate the efficiency and robustness of the proposed approach.
A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari, C. Farahmandpour,
Volume 1, Issue 3 (9-2011)
Abstract

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an optimal manner and to direct the agents toward the best regions, resulting in possible reduction of the number of particles. To show the computational advantages of the new PSO-SA method, some benchmark numerical examples are studied. The PSO-SA algorithm converges to better or at least the same solutions, while the number of structural analyses is significantly reduced
S. Kazemzadeh Azad, O. Hasançebi, O. K. Erol,
Volume 1, Issue 3 (9-2011)
Abstract

Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers to utilize such techniques in their applications. Big- Bang Big-Crunch (BB-BC) algorithm is a simple metaheuristic optimization method emerged from the Big Bang and Big Crunch theories of the universe evolution. The present study is an attempt to evaluate the efficiency of this algorithm in solving engineering optimization problems. The performance of the algorithm is investigated through various benchmark examples that have different features. The obtained results reveal the efficiency and robustness of the BB-BC algorithm in finding promising solutions for engineering optimization problems.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)
Abstract

This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
J. Salajegheh, S. Khosravi,
Volume 1, Issue 4 (12-2011)
Abstract

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO includes three phases. In the first phase, a preliminary optimization is accomplished using GSA as local search. In the second phase, an optimal initial swarm is produced using the optimum result of GSA. Finally, PSO is employed to find the optimum design using the optimal initial swarm. In order to reduce the computational cost of dam analysis subject to earthquake loading, weighted least squares support vector machine (WLS-SVM) is employed to accurately predict dynamic responses of gravity dams. Numerical results demonstrate the high performance of the hybrid meta-heuristic optimization for optimal shape design of concrete gravity dams. The solutions obtained by GSA-PSO are compared with those of GSA and PSO. It is revealed that GSA-PSO converges to a superior solution compared to GSA and PSO, and has a lower computation cost.
A. Kaveh, T. Bakhshpoori, M. Ashoory,
Volume 2, Issue 1 (3-2012)
Abstract

Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.
A. Kaveh, P. Zakian,
Volume 2, Issue 3 (7-2012)
Abstract

In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and performance based seismic design optimization is accomplished. Capacity curves of the optimal solution are determined and compared incorporates soil–structure interaction. Also an optimization based method is proposed for bilinear approximation of capacity curve. These are a new methodology for seismic RC shear wall optimum design.
S. Gholizadeh, H. Barati,
Volume 2, Issue 3 (7-2012)
Abstract

In the present study, the computational performance of the particle swarm optimization (PSO) harmony search (HS) and firefly algorithm (FA), as popular metaheuristics, is investigated for size and shape optimization of truss structures. The PSO was inspired by the social behavior of organisms such as bird flocking. The HS imitates the musical performance process which takes place when a musician searches for a better state of harmony, while the FA was based on the idealized behavior of the flashing characteristics of natural fireflies. These algorithms were inspired from different natural sources and their convergence behavior is focused in this paper. Several benchmark size and shape optimization problems of truss structures are solved using PSO, HS and FA and the results are compared. The numerical results demonstrate the superiority of FA to HS and PSO.
A. Abdelraheem Farghaly,
Volume 2, Issue 4 (10-2012)
Abstract

High tall buildings are more susceptible to dynamic excitations such as wind and seismic excitations. In this paper, design procedure and some current applications of tuned mass damper (TMD) were studied. TMD was proposed to study response of 20 storey height building to seismic excitations using time history analysis with and without the TMD. The study indicates that the response of structures such as storey displacements and shear force of columns can be dramatically reduced by using TMD groups with specific arrangement in the model. The study illustrates the group of four TMDs distributed on the plane can be effective as reinforced concrete core shear wall.
S. Shojaee, M. Arjomand, M. Khatibinia,
Volume 3, Issue 1 (3-2013)
Abstract

An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the results of MMA are used in IDPSO to optimize the cross-section areas. The results show that the hybrid of IDPSO and MMA can effectively accelerate the convergence rate and can quickly reach the optimum design.
O. Hasançebi, S. Kazemzadeh Azad, S. Kazemzadeh Azad,
Volume 3, Issue 2 (6-2013)
Abstract

The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm to optimum design of truss structures under stress and displacement constraints. The computational efficiency of the technique is improved through avoiding unnecessary analyses during the course of optimization using the so-called upper bound strategy (UBS). The efficiency of the UBS integrated SOPT algorithm is evaluated through benchmark sizing optimization problems of truss structures and the numerical results are reported. A comparison of the numerical results attained using the SOPT algorithm with those of modern metaheuristic techniques demonstrates that the employed algorithm is capable of locating promising designs with considerably less computational effort.
S. Gholizadeh , V. Aligholizadeh,
Volume 3, Issue 3 (9-2013)
Abstract

The main aim of the present study is to achieve optimum design of reinforced concrete (RC) plane moment frames using bat algorithm (BA) which is a newly developed meta-heuristic optimization algorithm based on the echolocation behaviour of bats. The objective function is the total cost of the frame and the design constraints are checked during the optimization process based on ACI 318-08 code. Design variables are the cross-sectional assignments of the structural members and are selected from a data set containing a finite number of sectional properties of beams and columns in a practical range. Three design examples including four, eight and twelve story RC frames are presented and the results are compared with those of other algorithms. The numerical results demonstrate the superiority of the BA to the other meta-heuristic algorithms in terms of the frame optimal cost and the convergence rate.
S. Kazemzadeh Azad, O. Hasançebi,
Volume 3, Issue 4 (10-2013)
Abstract

This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses involved in the course of design optimization. In the UBS, the key issue is to identify those candidate solutions which have no chance to improve the search during the optimum design process. After identifying those non-improving solutions, they are directly excluded from the structural analysis stage, diminishing the total computational cost. The performance of the UBS integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO outperforms the original PSO algorithm in terms of the computational efficiency.
S. Kazemzadeh Azad, O. Hasançebi , S. Kazemzadeh Azad,
Volume 4, Issue 2 (6-2014)
Abstract

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC-LRFD specifications. To this end an upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses in metaheuristic optimization algorithms, is used in conjunction with an exponential variant of the well-known big bang-big crunch optimization algorithm. The performance of the UBS integrated algorithm is investigated in the optimum design of two large-scale steel frame structures with 3860 and 11540 structural members. The obtained numerical results clearly reveal the usefulness of the employed technique in practical optimum design of large-scale structural systems even using regular computers.
R. Kamyab , E. Salajegheh,
Volume 4, Issue 2 (6-2014)
Abstract

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinearities. Operation of HSFA includes three phases. In the first phase, a preliminary optimization is accomplished using HS. In the second phase, an optimal initial population is produced using the first phase results. In the last phase, FA is employed to find optimum design using the produced optimal initial population. The optimum design obtained by HSFA is compared with those of HS and FA. It is demonstrated that the HSFA converges to better solution compared to the other algorithms.
S. Talatahari, H. Veladi, B. Nouhi,
Volume 4, Issue 3 (9-2014)
Abstract

Tunnel structures are known as expensive infrastructures and determining optimum designs of these structures can play a great role in minimizing their cost. The formulation of optimum design of industrial tunnel sections as an optimization is considered in this paper and then the enhanced charged system search, as a recently developed meta-heuristic approach, has been applied to solve the problem. The results and comparisons based on numerical examples show the efficiency of the optimization algorithm.
A. Kaveh , P. Hosseini,
Volume 4, Issue 3 (9-2014)
Abstract

Simplified Dolphin Echolocation (SDE) optimization is an improved version of the Dolphin Echolocation optimization. The dolphin echolocation (DE) is a recently proposed metaheuristic algorithm, which was imitated dolphin’s hunting process. The global or near global optimum solution modeled as dolphin’s bait, dolphins send sound in different directions to discover the best bait among their search space. This paper introduced a new optimization method called SDE for weight optimization of steel truss structures problems. SDE applies some new approaches for generating new solutions. These improvements enhance the accuracy and convergence rate of the DE SDE does not depend on any empirical parameter. The results of the SDE for mathematical and engineering optimization problems are compared to those of the standard DE and some popular metaheuristic algorithms. The results show that SDE is competitive with other algorithms.

Page 1 from 2    
First
Previous
1
 

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb