Search published articles


Showing 9 results for Frame Structures

F.r. Rofooei, A. Kaveh, F.m. Farahani,
Volume 1, Issue 3 (9-2011)
Abstract

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For this purpose, a number of 2-D structural models with varying number of bays and stories are designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The seismically–induced damages to these structural models are determined by performing extensive nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the structural models. A database is generated using the level of induced damages versus different parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural networks are trained for estimation of the probable seismic damage index.
A. Kaveh, M. Hassani,
Volume 1, Issue 4 (12-2011)
Abstract

In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains the formulation of the complementary energy of truss and frame structures for the purpose of linear analysis. In the second part material and geometric nonlinearity of structure is considered using Ramberg-Osgood relationships. In the last part optimal simultaneous analysis and design of structure is studied. In each part, the efficiency of the methods is illustrated by means simple examples.
S. Kazemzadeh Azad, O. Hasançebi,
Volume 3, Issue 4 (10-2013)
Abstract

This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses involved in the course of design optimization. In the UBS, the key issue is to identify those candidate solutions which have no chance to improve the search during the optimum design process. After identifying those non-improving solutions, they are directly excluded from the structural analysis stage, diminishing the total computational cost. The performance of the UBS integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO outperforms the original PSO algorithm in terms of the computational efficiency.
S. Gholizadeh, V. Aligholizadeh , M. Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract

In the present study, the reliability assessment of performance-based optimally seismic designed reinforced concrete (RC) and steel moment frames is investigated. In order to achieve this task, an efficient methodology is proposed by integrating Monte Carlo simulation (MCS) and neural networks (NN). Two NN models including radial basis function (RBF) and back propagation (BP) models are examined in this study. In the proposed methodology, MCS is used to estimate the total exceedence probability associated with immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels. To reduce the computational burden of MCS process, the required nonlinear responses of the generated structures are predicted by RBF and BP models. The numerical results imply the superiority of BP to RBF in prediction of structural responses associated with performance levels. Finally, the obtained results demonstrate the high efficiency of the proposed methodology for reliability assessment of RC and steel frame structures.
S. Kazemzadeh Azad, O. Hasançebi , S. Kazemzadeh Azad,
Volume 4, Issue 2 (6-2014)
Abstract

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC-LRFD specifications. To this end an upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses in metaheuristic optimization algorithms, is used in conjunction with an exponential variant of the well-known big bang-big crunch optimization algorithm. The performance of the UBS integrated algorithm is investigated in the optimum design of two large-scale steel frame structures with 3860 and 11540 structural members. The obtained numerical results clearly reveal the usefulness of the employed technique in practical optimum design of large-scale structural systems even using regular computers.
Ch Gheyratmand, S. Gholizadeh , B. Vababzadeh,
Volume 5, Issue 2 (3-2015)
Abstract

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during the optimization process subject to constraints on demand capacity ratios (DCRs) of structural members. Three benchmark design examples are tested using ABCA and IABCA and the results are compared with those of presented in the literature. The numerical results indicate that the proposed IABCA is an efficient computational tool for discrete optimization of RC frames.
A. Kaveh, M.h. Ghafari,
Volume 5, Issue 4 (7-2015)
Abstract

In rigid plastic analysis one of the most widely applicable methods that is based on the minimum principle, is the combination of elementary mechanisms which uses the upper bound theorem. In this method a mechanism is searched which corresponds to the smallest load factor. Mathematical programming can be used to optimize this search process for simple frames, and meta-heuristic algorithms are the best choice for larger frame structures. In this paper, the Colliding Bodies Optimization (CBO) and its enhanced variant (ECBO) are employed to optimize the process of finding an upper bound for the collapse load factor of the planar frames. The efficiency of these algorithms is compared to that of the Particle Swarm Optimization (PSO) algorithm through four numerical examples form multi-bay multi-story frames and pitched roof frames.
S. Talatahari,
Volume 6, Issue 1 (1-2016)
Abstract

This paper utilizes recent optimization algorithm called Ant Lion Optimizer (ALO) for optimal design of skeletal structures. The ALO is based on the hunting mechanism of Antlions in nature. The random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building traps are main steps for this algorithm. The new algorithm is examined by designing three truss and frame design optimization problems and its performance is further compared with various classical and advanced algorithms.
A. Khajeh, M. R. Ghasemi, H. Ghohani Arab,
Volume 7, Issue 2 (3-2017)
Abstract

This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space is divided into a series of grids by applying the grid search method. By using a method derived from the univariate method, the variables of the best particle change values. Finally, by considering an interval adjustment to the variables and generating particles randomly in new intervals, the particle swarm optimization allows us to swiftly find the optimum solution. This method causes converge to the optimum solution more rapidly and with less number of analyses involved. The proposed GSU-PSO algorithm is tested on several steel frames from the literature. The algorithm is implemented by interfacing MATLAB mathematical software and SAP2000 structural analysis code. The results indicated that this method has a higher convergence speed towards the optimal solution compared to the conventional and some well-known meta-heuristic algorithms. In comparison to the PSO algorithm, the proposed method required around 45% of the total number of analyses recorded and improved marginally the accuracy of solutions.



Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb