Search published articles


Showing 3 results for Ganjavi

B. Ganjavi, G. Ghodrati Amiri,
Volume 8, Issue 2 (8-2018)
Abstract

In this study, constant-ductility optimization algorithm under a family of earthquake ground motions is utilized to achieve uniform damage distribution over the height of steel moment resisting frames (SMRFs). SMRF structures with stiffness-degrading hysteric behavior are modeled as single-bay generic frame in which the plastic hinge is confined only at the beam ends and the bottom of the first story columns. Several SMRFs having different fundamental periods and number of stories are optimized such that a uniform story damage (ductility demand) is obtained under a given earthquake ground motion. Then, the optimum lateral load pattern derived from the optimization process is compared with that of the design load pattern proposed by the latest version of the Iranian code of practice, Standard No. 2800 to evaluate the adequacy of the seismic code design pattern. Results of this study indicate that, generally, the average story shear strength profiles corresponding to the optimum seismic design are significantly different from those of the Standard No. 2800 story shear strength pattern. In fact, the height-wise distribution of story ductility demands resulted from utilizing code-based design lateral load pattern are very non-uniform when compared to the corresponding optimum cases. In addition, a significant dependency is found between the average story shear strength pattern and inelastic behavior of structural elements.
B. Ganjavi, G. Ghodrati Amiri,
Volume 9, Issue 1 (1-2019)
Abstract

In the present study, ten steel-moment resisting frames (SMRFs) having different numbers of stories ranging from 3 to 20 stories and fundamental periods of vibration ranging from 0.3 to 3.0 second were optimized subjected to a set of earthquake ground motions using the concept of uniform damage distribution along the height of the structures. Based on the step-by-step optimization algorithm developed for uniform damage distribution, ductility-dependent strength reduction factor spectra were computed subjected to a given far-fault earthquake ground motion. Then, the mean ductility reduction factors subjected to 20 strong ground motions were computed and compared with those designed based on load pattern of ASCE-7-16 (similar to standard No. 2800) code provision. Results obtained from parametric studies indicate that, except in short-period structures, for moderate and high levels of inelastic demand the structures designed based on optimum load pattern with uniform damage distribution along the height require larger seismic design base shear strength when compared to the frames designed based on the code provisions, which is more pronounced for long-period structures i.e., the structural system becomes more flexible. This phenomenon can be associated to the P-delta effect tending to increase the story drift ratios of flexible structures, especially at the bottom stories. For practical purpose, a simplified expression which is a function of fundamental period and ductility demand to estimate ductility-dependent strength reduction factors of designed SMRFs according to code-based lateral load pattern is proposed.
B. Ganjavi , I. Hajirasouliha,
Volume 9, Issue 2 (4-2019)
Abstract

This paper presents a practical methodology for optimization of concentrically braced steel frames subjected to forward directivity near-fault ground motions, based on the concept of uniform deformation theory. This is performed by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In this regard, to overcome the complexity of the ordinary steel concentrically braced frames a simplified analytical model for seismic response prediction of concentrically braced frames is utulized. In this approach, a multistory frame is reduced to an equivalent shear-building model by performing a pushover analysis. A conventional shear-building model has been modified by introducing supplementary springs to account for flexural displacements in addition to shear displacements. It is shown that modified shear-building models provide a better estimation of the nonlinear dynamic response of real framed structures compared to nonlinear static procedures. Finally, the reliability of the proposed methodology has been verified by conducting nonlinear dynamic analysis on 5, 10 and 15 story frames subjected to 20 forward directivity pulse type near-fault ground motions.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb