دوره 2، شماره 1 - ( 12-1390 )                   جلد 2 شماره 1 صفحات 29-45 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholizadeh S, Sheidaii M, Farajzadeh S. SEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS. International Journal of Optimization in Civil Engineering. 2012; 2 (1) :29-45
URL: http://ijoce.iust.ac.ir/article-1-77-fa.html
SEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS. دانشگاه علم و صنعت ایران. 1390; 2 (1) :29-45

URL: http://ijoce.iust.ac.ir/article-1-77-fa.html


چکیده:   (4447 مشاهده)
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the variable length of span and height are considered. Back-propagation (BP), radial basis function (RBF) and generalized regression (GR) neural networks are trained for efficiently prediction of the seismic design of the structures. The numerical results demonstrate the superiority of the GR over the BP and RBF neural networks.
متن کامل [DOC 1671 kb]   (1383 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: ۱۳۹۱/۳/۷

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb