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ABSTRACT 
 

In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and 
exploitation capability of Nelder Mead simplex is presented for global optimization of multi-
variable functions. Some modifications are imposed on genetic algorithm to improve its 
capability and efficiency while being hybridized with Simplex method. Benchmark test 
examples of structural optimization with a large number of variables and constraints are 
chosen to show the robustness of the algorithm.  
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1. INTRODUCTION 
 

Recently global optimization has been a concern of researchers, especially when the fitness 
function is dependent on a large number of variables or it is strictly confined to some 
constraints. Hybridizing is the only motivation that brings back the hope to reach this goal as 
long as using only one search algorithm leads to dim results. A combination of two 
algorithms, in which one explores a promising area likely to contain global minima, and the 
other exploits the area to find the desired point would be promising if properly performed. 
Global methods like simulated annealing, tabu search, genetic algorithm, etc are known as 
efficient search engines to find and localize areas containing global minima, but they are 
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very much time consuming while converging to a specified point (if not get trapped in local 
minimum). On the other hand local methods including Nelder-Mead Simplex, hill climbing 
etc, are good for exploitation of the search domain. In this study we present a hybrid 
algorithm based on exploitation (diversification) power of genetic algorithm and exploitation 
(intensification) feature of the Nelder-Mead Simplex. 

The advantage of the simplex search method is that it is straightforward in an algorithmic 
sense and computationally efficient. However, as a result of using only local information, 
when they converge to a stationary point, there is no guarantee that the global optimum is 
found unless the domain in which the global minimum lies is provided. In contrast, a GA 
method explores the global search space without using local information of promising 
search directions. But its computational cost is comparatively high. A hybrid algorithm 
using both of these characteristics (exploration and exploitation) would be promising to find 
global minima in a broad types of problems. It is practically important to note that each of 
these algorithms and the new hybrid algorithm presented in this study do not require 
gradient or Hessian matrix calculations, and therefore it does not suffer from the weakness 
of classical optimization methods. The main goals of the present hybrid algorithm are as 
follows: 

 Reliability: A proper functioning of exploration and exploitation of the search 
domain (sometimes referred to as “diversification” and “intensification”) in order to 
find the true global minima. 

 Efficiency: Using simple but effective combination to reduce the total amount of 
function evaluation.        

Up to now we introduced the concepts related to this subject. Such general aspects can 
also be found in Refs. [1-6]. 

Proper numerical example plays an important role to reveal the robustness of a new 
algorithm. The large number of design variables and their mixed (discrete/continuous) 
nature has rendered the structure optimization a perfect benchmark for large scale search 
algorithms. The emergence of Evolutionary Algorithms, with their ability to simultaneously 
examine numerous areas of vast, multimodal search spaces resulted in more reliable and 
noticeably less expensive designs. 

After this introduction, the present paper is organized in the following order: Section 2 is 
devoted to the general description of the Genetic Algorithm and Nelder Mead Simplex. In 
Section 3 the hybrid mechanism is fully described and some modifications on the 
compatibility and efficiency of the algorithm are proposed. Numerical examples and the 
application of the algorithm are presented in Section 4. Concluding remarks form the content 
of Section 5.     

 
 

2. GENETIC ALGORITHM AND NELDER-MEAD SIMPLEX 
 

2.1. Genetic Algorithm 

The genetic algorithm (GA) is a search heuristic that mimic the genetic processes of 
biological organisms. This heuristic is widely used to explore useful solutions to 
optimization and search problems. Genetic algorithms belong to the larger class of 
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evolutionary algorithms (EA), and uses stochastic direct optimization methods. The term 
stochastic indicates that GA uses random operators, and therefore may result in a different 
(set of) solutions each time they are run. They are also direct, which means they only work 
with the value of the objective function itself and not its derivatives. GA makes a powerful, 
universal tool that can solve almost any type of optimization problems including constrained 
and unconstrained, single- and multi-variable, linear and nonlinear problems with 
continuous or discrete variables.  

They take an initial population of artificial chromosomes and let them evolve toward 
optimal solution(s) according to the principles of "natural selection" and "survival of the 
fittest". The evolution usually starts from a population of randomly generated individuals 
and happens in generations. In each generation, the fitness (measure of desirability) of every 
individual in the population is evaluated. Multiple individuals are then stochastically 
selected from the current population (based on their fitness), and modified using such 
genetic operators as recombination (crossover) and mutation to form a new population. The 
new population is then used as the “current population” in the next iteration of the 
algorithm. The average fitness of the new generation is expected to be higher than that of the 
previous generation, as the best individuals of the last generation have been given higher 
chances for breeding. Commonly, the algorithm terminates when either a maximum number 
of generations has been produced, or a satisfactory fitness level has been reached for the 
population. 

Finding the optimal solution of complex high dimensional and multimodal problems 
often requires very expensive fitness function evaluations. As a result of this, existence of an 
efficient optimization algorithm seems to be vital. Working with a bunch of solution vectors 
in each generation, time efficiency has always been a concern in GAs.  Other criticisms are 
also mentioned about the functionality of GA but the worst among these defects is getting 
trapped in the local optima of the objective function in which an unrealistic solution 
regarded as the global minima is achieved. 

In order to make GA a more reliable algorithm and in relation with optimization 
efficiency (better solutions with fewer function evaluation) many mechanisms have been 
suggested. One is improvements upon the mechanism of the algorithm, such as modification 
of genetic operators, or the use of niche technique, etc; the other is hybridizing of GA with 
other optimization methods, especially the ones working in local search spaces such as the 
Nelder-Mead Simplex, simulated annealing (SA), etc. 

 
2.2. Nelder Mead simplex 

The Nelder–Mead simplex (NMS) search method is based upon the work of Spendley et al. 
[7]. A simplex is a geometrical figure consisting in n-dimentions, of )1( n points: nxx ,...,0 . 

If any point of  a simplex is taken as the origin, then other points define vectorer directions 
that span the n-dimention vector scace. Through a sequence of elementary geometric 
transformation (reflection, contraction, expansion and multi-contraction), the initila simplex 
moves, expands or contrasts. To select appropriate transformation, the method only uses the 
values of the function to be optimizaed at the vertices of the simplex considered. After each 
transformation, the current worst vertex is replaced by a  better one. The trial movements in 
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Figure 1 are generated according to these opeartors (xh: Represents the vertex where the 
objective function is the highest and xl represents the vertex where the objective function is 
the lowest).  
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Figure 1. Simplex procedures (reflection, contraction, expansion and multi-contraction) 
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Where 1kx indicates the vertex replacing kx at the iteration )1( k , and   is a small real 

positive number.  
The Nelder-Mead simplex method has been applied in physics [9], crystallography [10], 
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biology [11], chemistry [12] and health care [13]. Fletcher [14] considers the Nelder-Mead 
technique as one of the most successful methods that merely compare function values. There 
have been abundant studies devoted to various modifications of the Nelder-Mead simplex 
method appearing in the literature, such as Barton and Ivey [15], Nazareth and Tzeng [16], 
etc. However, the simple unmodified Nelder-Mead version of the simplex algorithm is best 
suited to our needs to hybridize with GA. 

 
 

3. HYBRID ALGORITHM GA-NMS 
 

3.1. Structure of the GA-NMS 

In this section the hybrid algorithm GA-NMS is presented in detail. The main idea behind 
this algorithm is to combine the advantages of each algorithm in a way to avoid their 
disadvantages. It should also be pointed out that this hybrid algorithm is coded to deal with 
highly challenging problems as it will be shown in Section 4, and for regular problems 
considering all of these specifications are not valuable. First the general algorithm is 
presented and then some modifications are performed to improve the compatibility and 
efficiency of the algorithm.  

 
3.1.1. Initialization 

In the first step the parameters of the algorithm are initialized, these parameters include the 
simple GA parameters like rate of the Crossover (Rc), Mutation probability (PM), the length 
of the Chromosomes and the number of population, and the controlling parameters that 
determines the interference of each algorithm (GA and Simplex). Recommendation on the 
magnitude of GA parameters is beyond the scope of this research, because they are highly 
dependent on the type of the problem being studied. However some modifications will be 
presented to improve their efficiency. 

 
3.1.2. Exploration of the search domain 

In this section the GA is ignited by the randomly selected chromosome. The algorithm 
takes these initial points to make up the first mating pool in which the first generation 
will be born afterwards. Experiments show that a properly coded GA can explore the 
search domain to the global solution at the first 10,000~30,000 function evaluations, 
although this magnitude is highly dependent on the complexity of the problem. We want 
to ignore the common convergence criteria of the GAs by gradually decreasing the 
interference of the GA in the solution of the algorithm. According to this consideration, 
in the first steps, the GA is the only working algorithm that travels around the search 
domain to fine out the optimum regions and may be stopped if one of these criteria is 
fulfilled.  

 
3.1.3. Exploitation 

Here we define a controlling parameter which defines the interference of each sub 
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algorithm in the solution of the main algorithm. We want to transform the solution from 
an exploration one to exploitation. Thus by calling the interference rate of the GA and 
the Simplex as IG, IS respectively, and by considering that IG +IS=0.9, we aim to 
transform the solution. The number of solution points that each algorithm works in this 
section is equal to the number of population multiplied by IG or IS. In other words if we 
set a ranked population, we send 0.1 of the best population from this generation to the 
next generation without any change. This mechanism which is called elitism seems to 
secure the place of the best chromosomes in this transmission. The other part of 
population is transformed from GA or Simplex according to the steps in Table 1: (A 
population of 100 is assumed to exist). 

 
Table 1. Operation of controlling operators 

 Step 1 Step 2 Step 3 Step 4 Step 5 

Iteration number 100 200 250 300 400 

Gl  0.9 0.5 0.4 0.2 0 (Stops) 

Sl  0 0.4 0.5 0.7 0.9 

Genetic population 100 60 50 40 0 (Stops) 

 

 

Figure 2. Schematic diagram of the GA-NMS algorithm 
 
Figure 2 shows a schematic view of the GA-NMS algorithm. In addition in order to make 
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better generation and mate some of the good features from the best population, we send the 
best 10% of the population to the GA in order to make better off-springs.  

The operation finally changes to a pure exploitation which stops whenever the Simplex 
convergence critertion defined by Eq. (1) is satisfied. As we see the number of population 
that goes under the operation of Simplex gradually increases and on the other hand in a 
simple Simplex method we need at least n+1 vertices (n determines the number of 
variables). The number of vertices which can be used and the number of separate Simplex 
that can be run among these points are optional and they can be adjusted by user since they 
are mainly dependent on the number of population. Experiments show that if we divide the 
population in a way that leads to a maximum number of sub groups fitted to Simplex 
algorithm, better results will be achieved. 

 
3.2.  Modifications 

3.2.1. Improving GA operators 

3.2.1.1. Reproduction 

A variety of methods have been introduced for reproduction in GA. Goldberg introduced 
the application of roulette wheel as the most famous tool for this operator. A very easy 
and more efficient way to choose parents is to randomly choose 2 chromosomes and 
compare their fitness. The chromosome with better fitness will be the candidate for being 
a parent. This method is called Tournament Selection.  Selection pressure is easily 
adjusted by changing the tournament size. If the tournament size is larger, weak 
individuals have a smaller chance to be selected. This method can reproduce better 
generation as it explores a theme of elitism. 
 
3.2.1.2. Dynamic mutation 

A method of dynamic establishment of mutation probability in the genetic algorithm can be 
useful as we aim at exploration property of the GA. The comparison of the results shows an 
oscillating generations but very swift steps are performed to reach the region of solution. 
The mixture of reproduction method explained above and the Dynamic Mutation leads to a 
great combination hoping to achieve the exploration capacity of the GA. A comparison of 
the common mutation magnitude and the dynamic values is presented in Figure 3. The 
dynamic value is obtained by easily dividing the Pm by the generation number. A big value 
of Pm=0.1 in comparison of ubiquitous magnitudes was considered that gradually decreases 
in order to stabilize the generation. 
 
3.2.2. Compatibility with constrained problems 

A simple GA and the Simplex method were both compatible with unconstrained 
problems. By defining the application of penalty method we transform the problem into an 
unconstrained one. As we know a constrained problem is one in which the feasible region 
is defined by a set of implicit/explicit constraints. As an example to optimize weight of a 
truss we are searching for the lowest cross section of members and the constraints are 
stress and displacement of members. Here stress and displacement are indirect constraints 
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as they are not applied directly on the cross section of the members i.e. the variables of 
the fitness function. 
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Figure 3. Comparison between static and dynamic mutations  
 
To shift the problem to a normal form, we easily apply the penalty to the solution which 

violates the constraints. Thus automatically the fitness of these chromosomes are lowered. 
Many penalty methods are introduced and suggested for different problems. Here we apply 
the dynamic penalty as follow: 
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The sensitivity of the problem to this penalty method is presented in Eqs. (1- 3) and 

its parameters have direct impact on the final result and are all beyond the scope of this 
research. Dynamic penalty enables algorithm to have a smooth rate of reaching to the 
global optimum. A wise tuning of the penalty parameters will tend the algorithm to find 
the global optimum and preferably search areas nearer to the boundaries of constraints 
where the validity of the solution is acceptable and the global point also lay there. In 
Figure 4 two convergence histories for a typical test case are included, one with high 
penalty orders and the other one with low penalty orders for coefficient in Eq. (3). 
Knowing the physics of the constraints enables us to adopt proper values, hence 
converging to more reliable results.  
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Figure 4. Comparison between the convegence history of penalty methods  
 
 

4. NUMERICAL EXAMPLES 
 

4.1. Introduction to structure optimization and dome and large-scale structures 

To demonstrate the efficiency of this algorithm, weight minimization of structures is chosen 
as the test cases. These numerical examples are among those chosen in the literature to show 
the robustness of different algorithms. The nonlinearity of the problem, number of variables 
and constraints are the factors that determine the complexity of such problems. The test case 
problems are chosen in a variety of variables, ranging from 29~200 which are holding a 
number of constraints up to 3500. In all cases, the presented algorithm overcomes its rivals. 
For each test case the reported results in the literature are also provided. 

From the analytical point of view the weight minimization problem of a trusses structure 
can be put in the following form: 

Fitness function: 
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Where: 
 eN  is the number of elements in the structure; 

 nN  is the total number of nodes; 

 cN is the number of independent loading conditions acting on the structure; 
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 g is the gravity acceleration value (9.81 m/s2);  
   is the material density; 

  ),,,,( 111 NAAAAAA   is the vector of the cross sectional areas values; jA is the 

area of the jth element of the structure. l
jA and u

jA  are lower and upper bounds 

of jA ; 

 jl is the length of  jth  element, which is: 

 

 )()()( 2
21

2
21

2
21 jjjjjjj zzyyxxl   (7) 

 
Where 2,12,12,1 ,, jjj zyx   are the nodal coordinates of the  jth  element. 

ilckzyxu ,),,,(  are the displacements of the kth  node in the directions zyx ,,   with the lower 

and upper limits l
kzyxu ),,,(  and u

kzyxu ),,,(   in corresponding of the ilcth  loading condition; 

 ilcj ,  is the stress on the jth  element, with the lower and upper limits l
k   and u

k  , 

in correspondence of the ilcth  loading condition. 
 

4.2. Large-scale truss optimization 

Three numerical examples chosen from size optimum design of large-scale truss structures 
are studied to test and verify efficiency of the GA-NMS algorithm, as well as to illustrate its 
applicability for optimum design of practical structures. The studied trusses consist of a 200 
bar truss and the 942 bar truss. These benchmark problems are also studied by different 
researchers including Farshi and Ziazi[17],Venkaya et al [18], Adeli and Cheng [19], 
Erbatur  and Hasancebi [20]. The general features of these trusses are listed in Table 2.  

 
Table 2. General properties of large-scale trusses 

Property / type of the truss 200-bar truss 942-bar truss 

Number of variables 29-200 59 

Minimum cross section 0.1 in2 1 in2 

Material density 0.283 
2in

b1  0.1 
2in

b1  

Modulus of elasticity 30000 ksi 10000 ksi 

 
4.2.1. A 200-bar truss 

Due to the symmetry of the structure, variables linking are adopted and the areas are 
grouped into twenty-nine groups and 29 optimization variables are considered according to 
Figure 5. The following three independent loading conditions are imposed on the structure: 

(a) 1000 lbf in positive x-direction at nodes 1,6,15,20,29,34,43,48,57,62 and 71; 
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(b) 10000 lbf  in negative y-direction at nodes 1, 2, 3,4,5,6,8,10, 
 

12,14,15,16,17,18,19,20,22,24,26,28,29,30,31,32,33,34,36,38,40,42,43, 
44,45,46,47,48,50,52,54,56,58,59,60,61,62,64,66,68,70,71,72,73,74,75; 
 

(c) The loading conditions (a) and (b) acting together; 
Table 3 presents the optimal results for this case study.  
 

 
Figure 5. Two hundred-bar truss scheme 
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Table 3. Optimal designs of the 200-bar truss 

Variables Farshi and Ziazi [17] This research 

A1(in.2)  0.147 0.147 
A2 0.945 0.935 
A3  0.1 0.1051 
A4  0.1 0.1062 
A5  1.9451 1.9445 
A6  0.2969 0.2982 
A7  0.1 0.1 
A8  3.1062 3.1064 
A9  0.1 0.1092 
A10  4.1052 4.1089 
A11  0.4039 0.4031 
A12  0.1934 0.1957 
A13  5.4289 5.4201 
A14  0.1 0.1 
A15  6.4289 6.4252 
A16  0.5745 0.5776 
A17  0.1339 0.1336 
A18  7.9737 7.9782 
A19  0.1 0.1 
A20  8.9737 8.9637 
A21  0.7053 0.7002 
A22  0.4215 0.4258 
A23  10.8675 10.8594 
A24  0.1 0.1 
A25  11.8674 11.8636 
A26  1.0349 1.029 
A27  6.6849 6.6801 
A28  10.8101 10.8158 
A29  13.8379 13.829 

Weight (lb) 25456.57 25449.27 

 
4.2.2. The 200 bar space truss structure with five independent loading conditions 

The planar 200-bar truss structure shown in Figure 5 can be optimized also with 200 design 
variables by assigning a sizing variable to the cross-sectional of each element. The structure 
is designed to carry five independent loading conditions. Besides the three load cases listed 
in Section 4.2.1, the structure is also loaded by 

(d) 1000 lbf acting in the negative x-direction at node points 
5,14,19,28,33,42,47,56,61,70 and 75; 
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(e) Loading conditions (b)–described in Section 4.2.1.1 – and (d) acting together. 
The optimization includes 3500 non-linear constraints on nodal displacements and 

member stresses. The displacements of all free nodes in both directions x and y must be less 
than ±0.5in. The allowable stress (the same in tension and compression) is 30,000psi. The 
lower bound of cross-sectional areas is 0.1 in2. 

Table 4 shows the results and a comparison of the available results in the literature. 
 

Table 4. Optimal designs of the 200-bar truss with five loading conditions (Areas of elements on 
one side of symmetrical line) 

 
 

4.2.3. A 942-bar truss 

The 26-story tower space truss containing 942 elements and 244 nodes is considered in this 
section. 59 design variables are used regarding the symmetry of the structure. Figure 6 
shows the geometry and the 59 element groups. The members are subjected to the stress 
limits of ±25 ksi (±172.375 MPa)  and the four nodes of the top level in the x, y and z 
directions are subjected to the displacement limits of ±15.0in (±38.10cm). The allowable 
cross-sectional areas in this example are selected from 0.1 to 200in2. The loading on the 
structure consists of:  

(1) The vertical load at each node in the first section (by section we mean a storey of the 
structure) is equal to 3 kips. (2) The vertical load at each node in the second section is equal 
to 6 kips. (3) The vertical load at each node in the third section is equal to 9 kips. (4) The 
horizontal load at each node on the right side in the x  direction is equal to 1 kips. (5) The 
horizontal load at each node on the left side in the  direction is equal to 1.5 kips. (6) The 
horizontal load at each node on the front side in the  direction is equal to 1 kips. (7) The 

horizontal load at each node on the back side in the  direction is equal to 1 kips. 
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   Table 5 lists the available studies on this case and the results for this algorithm. It is 
obvious that like other cases the results from this algorithm outperforms its rivals. 

 
Table 5. Optimal design of 942-bar tower space truss 

Variables Adeli and Cheng [19] Erbatur  and Hasancebi  [20] This research 

  (  Not Available 1.00 2.7859 

 Not Available 1.00 1.3572 

 Not Available 3.00 5.0362 

 Not Available 1.00 2.2398 

 Not Available 1.00 1.2226 

 Not Available 17.00 14.9575 

 Not Available 3.00 2.9568 

 Not Available 7.00 10.9038 

 Not Available 20.00 14.4177 

 Not Available 1.00 3.7090 

 Not Available 8.00 5.7076 

 Not Available 7.00 4.9264 

 Not Available 19.00 14.1751 

 Not Available 2.00 1.9043 

 Not Available 5.00 2.8101 

 Not Available 1.00 1.0000 

 Not Available 22.00 18.8070 

 Not Available 3.00 2.6151 

 Not Available 9.00 12.5328 

 Not Available 1.00 1.1314 

 Not Available 34.00 30.5122 

 Not Available 3.00 3.3460 

 Not Available 19.00 17.0450 

 Not Available 27.00 18.0785 

 Not Available 42.00 39.2717 

 Not Available 1.00 2.6062 

 Not Available 12.00 9.8303 

 Not Available 16.00 13.1126 

 Not Available 19.00 13.6897 

 Not Available 14.00 16.9776 
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Variables Adeli and Cheng [19] Erbatur  and Hasancebi  [20] This research 

 Not Available 42.00 37.6006 

 Not Available 4.00 3.0602 

 Not Available 4.00 5.5106 

 Not Available 4.00 1.8014 

 Not Available 1.00 1.1568 

 Not Available 1.00 1.2423 

 Not Available 62.00 62.7741 

 Not Available 3.00 3.3276 

 Not Available 2.00 4.2369 

 Not Available 4.00 1.7202 

 Not Available 1.00 1.0148 

 Not Available 2.00 5.6428 

 Not Available 77.00 78.0094 

 Not Available 3.00 3.2206 

 Not Available 2.00 3.5934 

 Not Available 3.00 4.7668 

 Not Available 2.00 1.1531 

 Not Available 3.00 2.1698 

 Not Available 100.00 99.6406 

 Not Available 4.00 4.1469 

 Not Available 1.00 2.1600 

 Not Available 4.00 4.1499 

 Not Available 6.00 11.2070 

 Not Available 3.00 11.0904 

 Not Available 49.00 35.9499 

 Not Available 1.00 2.1937 

 Not Available 62.00 66.1705 

 Not Available 1.00 3.3402 

 Not Available 3 4.0525 

Weight (lb) 170000 143436 142295.75 
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Figure 6. A 26-story tower space truss 
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5. CONCLUSION 
 

In this paper a hybrid algorithm is presented for finding the global minimum of the objective 
function for both constrained and unconstrained problems. A controlled mixture of main 
characteristics of two different algorithms (exploration of Genetic algorithm and exploitation 
of Nelder-Mead simplex) led to a new algorithm which has promising results in the 
challenging field of structural optimization. Moreover some modifications are implemented 
on the GA operators to improve its convergence rate and reaching better results. 
Optimization costs in terms of CPU usage or convergence time decreased since simple-
coded algorithm like Nelder-Mead simplex were used in hybridizing with modified GA.       
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