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ABSTRACT 
 

Optimization methods are essential in today's world. Several types of optimization methods 

exist, and deterministic methods cannot solve some problems, so approximate optimization 

methods are used. The use of approximate optimization methods is therefore widespread. 

One of the metaheuristic algorithms for optimization, the EVPS algorithm has been 

successfully applied to engineering problems, particularly structural engineering problems. 

As this algorithm requires experimental parameters, this research presents a method for 

determining these parameters for each problem and a self-adaptive algorithm called the SA-

EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS 

algorithm using the 72-bar spatial truss structure and three classical benchmarked functions 
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1. INTRODUCTION 
 

Optimization leads to the efficient use of funds, time, and materials in engineering. It is 

common to use metaheuristic algorithms to solve problems in a short amount of time, but 

they cannot guarantee that the best solution will be obtained. In order to provide more 

efficient answers in a reasonable amount of time, metaheuristic algorithms present methods 

that result in more efficient answers for various problems. Over the last two decades, meta-

heuristic optimization techniques have become very popular. The following are a few of 
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these methods: 

Genetic Algorithm (GA) [1], Charged System Search (CSS) [2], Colliding Bodies 

Optimization (CBO) [3], Tug of War Optimization (TWO) [4], Accelerated Water 

Evaporation Optimization (AWEO) [5], Dolphin Echolocation optimization (DE) [6], 

Simplified Dolphin Echolocation optimization (SDE)[7], Modified Dolphin Monitoring 

(MDM) [8], Differential evolution algorithm (DE) [9], League Championship Algorithm 

(LCA) [10], Teaching Learning Based Optimization (TLBO) [11], Chemical Reaction 

Optimization (CRO) [12], Sine Cosine Algorithm (SCA) [13], Search and Rescue 

Optimization Algorithm (SSOA) [14], Water Wave Optimization (WWO) [15], Honey 

Badger Algorithm (HBA) [16]. 

Metaheuristic algorithms were quite simple at first, and were usually inspired by very 

simple concepts. Typically, inspiration comes from physical phenomena, animal behavior, 

or evolutionary concepts [17]. Simple metaheuristic algorithms can be simulated, proposed, 

hybridized, or improved by computer scientists. As a result, other scientists can learn and 

apply metaheuristic algorithms quickly. A metaheuristic is flexible if it can be applied to 

different problems without requiring any special changes in its structure. Unlike other 

methods, metaheuristic algorithms tend to assume problems as black boxes. Metaheuristic 

algorithms consider only inputs and outputs of a system. Designers need only know how to 

represent their problems for metaheuristic algorithms. Most metaheuristic algorithms are not 

derivation-based. Metaheuristic algorithms optimize problems stochastically, unlike 

gradient-based optimization. To find the optimum, the optimization process starts with 

random solutions. Metaheuristic algorithms are highly appropriate for problems with 

expensive derivatives or unknowns. Metaheuristic algorithms are better than conventional 

optimization techniques at avoiding local optima. Metaheuristic algorithms are stochastic, 

thus avoiding local stagnation and searching the entire search space extensively [17]. In real 

problems, the search space is often unknown and complex with many local optima, which is 

why metaheuristic algorithms can be useful. 

The Vibrating Particle Systems (VPS) algorithm models viscous damping for a single 

degree of freedom system [18]. The purpose of this algorithm is to investigate the gradual 

movement of particles towards their equilibrium position. In order to improve the 

performance of VPS, the EVPS algorithm was developed by changing some parameters of 

the VPS algorithm [19]. A number of optimization problems have been solved using the 

EVPS algorithm, some of which are listed below: 

Hosseini Vaez et al. developed an optimization problem to calculate the reliability index 

for structural problems with implicit limit state functions, in order to reduce the computation 

effort [20]. An integrated dynamic extended finite element method (XFEM) based on 

geometry-based crack detection for plate structures has been presented by Fathi et al. [21]. 

According to Kaveh et al, the Modified Dolphin Monitoring (MDM) operator was applied to 

the EVPS algorithm to evaluate the reliability index of three well-known steel frame 

structures [22]. The purpose of Kaveh et al's study was to improve the EVPS algorithm by 

reducing the regulatory parameters' impact on the algorithm's performance [23]. To reduce 

the burden of calculations associated with the former methods of damage detection, Kaveh 

et al presented a new objective function to detect damage. In the first phase, natural 

frequencies are calculated, and in the second phase, mode shapes are evaluated [24]. As part  [
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of a two-step approach, Hosseini Vaez et al. optimized reliability-based structures by 

examining the probabilistic constraint if the deterministic constraint was satisfied [25]. 

Using nonlinear time history analysis, Kaveh et al. presented a new objective function for 

optimal design of Buckling Restrained Braced Frames (BRBFs) [26]. Hosseini et al. 

calculated the reliability index of four transmission line towers using four metaheuristic 

algorithms based on the displacement of the nodes, and compared the results with Monte 

Carlo Simulations (MCS) [27]. To increase response robustness and decrease weight, 

Hosseini et al optimized two space trusses based on modulus of elasticity, yield stress, and 

cross-sectional uncertainties [28]. According to Hosseini et al, the reliability indexes of 

Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based 

Design Optimization (RBDO) were compared for three large-scale dome trusses [29]. 

There are several parameters in the EVPS algorithm, including , p, w1, w2, HMCR, 

PAR, Neighbor and Memory_size, which are experimentally determined; however, these 

parameters are considered specific values by default. This study investigates the effects of 

each parameter on the obtained optimal solution and proposes a method for adjusting them. 

These parameters can be adjusted to improve the convergence speed and accuracy of the 

EVPS algorithm, as well as its ability to escape local optima. This method is known as a 

Self-Adaptive EVPS algorithm (SA-EVPS). This method was evaluated using four 

examples, including three benchmarked functions, namely F5, F6 and F13, and a 72 bar 

spatial truss structure, in order to optimize and compare the results of EVPS and SA-EVPS. 

The paper is organized as follows: The introduction is presented in Section one. Section 

two provides a brief explanation of the EVPS algorithm. In section three, SA-EVPS is 

discussed. The fourth section contains four benchmark problems. The final section of the 

paper presents the conclusion. 

 
 

2. A BRIEF EXPLANATION OF THE EVPS ALGORITHM [29] 
 

Kaveh et al. presented the EVPS algorithm [30], which is an improved version of the VPS 

algorithm that was presented in 2018 [31]. As of now, the EVPS algorithm is being used 

successfully in structural optimization topics. The following performance characteristics are 

associated with this algorithm: 

In the first instance, the permissible range of the initial population created by Eq. (1) 

must be considered. 

 

(1)  .j

i min max minx x rand x x    

 

where  is the jth variable of the ith particle; and  are the upper and lower 

bounds of design variables in the search space, respectively. An additional parameter, called 

memory, maintains the number of memory sizes from the best positions achieved by the 

population. The effect of damping level on vibration is described by equation (2).  [
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(2) 
max

iter
D

iter


 

  
 

 

 

where iter is the current number of iterations;  is the total number of iterations and α 

is a parameter with a constant value; ±1 is used randomly. Finally, the new positions of the 

population are updated by Eq. (3). 

 

(3) 

 

 

 

. . 1          

. . 2              

. . 3              

j

j j

i

j

D A rand OHB a

x D A rand GP b

D A rand BP c

   

   

  

 

 

where OHB, GP, and BP are determined independently for each of the variables, and A is 

defined as follows: 

 

(4) 

    

    
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j j
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j j

i

OHB x a

A GP x b

BP x c

  



  

 

 

1 2 3 1      

 

The coefficients ω1, ω2, and ω3 are the relative importance for OHB, GP, and BP, 

respectively; rand1, rand2, and rand3 are random numbers uniformly distributed in the [0, 

1] range. It should be noted that what was discussed is only a summary of the EVPS 

algorithm, and the author may wish to consult Kaveh et al's study in order to obtain a more 

complete explanation [30].  

 

 

3. SELF-ADAPTIVE EVPS ALGORITHM (SA-EVPS) 
 

In the previous section, it was discussed that the EVPS algorithm makes use of eight 

variables, including  ,  p, w1, w2, HMCR, PAR, Neighbor, and Memory_size, which are 

experimentally determined. In spite of the fact that these parameters are considered specific 

values by default in the EVPS algorithm, they are set as constants of 0.05, 0.2, 0.3, 0.3, 0.95, 

0.1, 0.1 and 4, respectively. Search accuracy, exploration and exploit phases, convergence 

speed, and overall algorithm behavior are controlled by the EVPS parameters. As a result, 

all of these parameters have a significant impact on the behavior of the method. All eight 

parameters mentioned above are also optimized before the main optimization takes place. 

First, all 8 parameters are optimized for the desired problem using the EVPS algorithm, and 

then the main optimization is conducted. A schematic illustration of the SA-EVPS algorithm 

can be found in Fig. 1. 
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Figure 1. schematic illustration of the SA-EVPS algorithm 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, a number of numerical examples including benchmarked functions, namely 

F5, F6, and F13, and the 72 bar spatial truss structure are compared using the EVPS and SA-

EVPS algorithms. In the optimization process, 30 independent runs are conducted for each 

example. In all problems, the population size is 30. In the EVPS algorithm , p, w1, w2, 

HMCR, PAR, Neighbor and Memory_size are 0.05, 0.2, 0.3, 0.3, 0.95, 0.1, 0.1, and 4, 

respectively. 

 

4.1 The 72 bar spatial truss structure 

Based on the 72-bar spatial truss structure shown in Fig 2, the elements can be classified into 

sixteen design groups:  [
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(1) A1_A4, (2) A5_A12, (3) A13_A16, (4) A17_A18, (5) A19_A22, (6) A23_A30, (7) 

A31_A34, (8) A35_A36, (9) A37_A40, (10) A41_A48, (11) A49_A52, (12) A53_A54, (13) 

A55_A58, (14) A59_A66 (15), A67_A70, and (16) A71_A72. 

It is assumed that the density of the material is 0.1 lb/in3 and the modulus of elasticity is 

10,000 ksi. Members are subjected to a stress limit of 25 ksi. Nodes are subject to displacement 

limits of 0.25 inches. For each member, the minimum cross-sectional area is 0.10 in2, and the 

maximum cross-sectional area is 4.00 in2. The loading conditions are as follows: 

1. Node 17 is loaded with 5, 5 and -5 kips in the x, y, and z directions, respectively.  

2. There is a load of -5 kips in the z direction at nodes 1, 2, 3 and 4. 

Fig. 3 illustrates the effects of changing each of the parameters on the EVPS algorithm by 

showing the best, worst, and mean answers along with the standard deviation associated 

with each value. It is significant to note that each point in this figure is the result of 30 

independent runs. As can be seen in this figure, each parameter has a significant impact on 

the quality of the answer. According to the figures, some parameters have a greater effect 

than others (such as  , w1, p, PAR, and HMCR). 

Table 1 shows the parameters of the SA-EVPS algorithm that are self-adaptive 

(optimized). Table 2 shows the lightest weight, the worst weight, the mean weight, and the 

standard deviation of 30 independent runs obtained by EVPS and SA-EVPS algorithms. SA-

EVPS algorithm has achieved better results than EVPS algorithm. The convergence 

diagrams for EVPS and SA-EVPS algorithms for 30 independent runs are shown in Fig. 4 
(Logarithmic scale was selected for the vertical axis due to an issue with visualizations 

skewing towards very small values over a very broad range of values. 

 

  
Figure 2. illustration of the 72-bar spatial truss from two view  [
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Table 1: SA-EVPS algorithm parameters that are self-adaptive (optimized) for 72-bar spatial 

truss 

Parameter Value 

1   0.06744712 

2 p 0.2903912 

3 w1 0.7941491 

4 w2 0.2115948 

5 HMCR 0.08632188 

6 PAR 0.8558247 

7 Neighbor 0.8414693 

8 Memory_size 1 

 
Table 2: Evaluation of EVPS and SA-EVPS results for the 72-bar spatial truss 

Element Group 
Optimal cross-sectional areas (in2) 

EVPS SA-EVPS 

1 A1-A4 0.156026 0.1563854 

2 A5-A12 0.550565 0.5474971 

3 A13-A16 0.41266 0.4081775 

4 A17-A18 0.568612 0.5751029 

5 A19-A22 0.536759 0.5224397 

6 A23-A30 0.519986 0.5116629 

7 A31-A34 0.1 0.1000004 

8 A35-A36 0.100734 0.1002537 

9 A37-A40 1.26445 1.2693775 

10 A41-A48 0.508508 0.512734 

11 A49-A52 0.100002 0.1 

12 A53-A54 0.1 0.1000002 

13 A55-A58 1.858562 1.8915552 

14 A59-A66 0.511243 0.5129524 

15 A67-A70 0.1 0.1000001 

16 A71-A72 0.100001 0.1 

Best weight (lb) 379.6433149 379.6288237 

Worst weight (lb) 380.4062092 380.003324 

Average weight(lb) 379.86586 379.7419802 

STD 0.195520567 0.101362697 
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Figure 3. illustration the effects of changing each of the parameters on the EVPS algorithm for 

the 72-bar spatial truss 

 

 
(a) 

 
(b) 

Figure 4. Convergence curves for the spatial 72-bar spatial truss of 30 independent runs for 

EVPS and SA-EVPS. (a) graph in linear form, (b) graph in Solid form 
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4.2 Three classical benchmarked functions 

This section compares the SA-EVPS algorithm with the EVPS algorithm using three 

benchmark functions. Many researchers use these benchmark functions as classical 

functions [17]. Although these benchmark functions are simple, they were chosen to 

evaluate the performance of the SA-EVPS algorithm. Table 3 shows the benchmark 

functions. Dim indicates the dimension of the function, Range is the bounds of the function's 

search space, and fmin is the optimum. Figs. 5 to 7 illustrate the functions of table 3. Based 

on three classical benchmarks, Table 4 shows the parameters of the SA-EVPS algorithm that 

are self-adaptive (optimized). According to Table 5, the optimal answer, the worst, the mean 

answer, and the standard deviation for 30 independent runs were obtained using the EVPS 

and SA-EVPS algorithms. It has been demonstrated that the SA-EVPS algorithm has 

achieved better results than the EVPS algorithm. Figs. 8 to 10 illustrate the convergence 

diagrams for the EVPS and SA-EVPS algorithms over 30 independent runs. (Logarithmic 

scale was selected for the vertical axis due to an issue with visualizations skewing towards 

very small values over a very broad range of values.) 

 
Table 3: the classical benchmark functions 

Function Dim Range fmin 
1

2 2 2

5 1)

1

( ) [100( ) ( 1) ]
n

i i i

i

f x x x x






     30 [-30,30] 0 

2

6

1

( ) ([ 0.5])
n

i

i

f x x


   30 [-100,100] 0 

 2 2 2 2 2

13 1

1 1

( ) 0.1 sin (3 ) ( 1) [1 sin (3 1)] ( 1) [1 sin (2 )] u( , 5,100, 4)

n n

i i n i i

i i

f x x x x x x x  

 

           30 [-50,50] 0 

 

 
Figure 5. The F5 function of Table 3 
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Figure 6. The F6 function of Table 3 

 

 
Figure 7. The F13 function of Table 3 

 

Table 4: SA-EVPS algorithm parameters that are self-adaptive (optimized) for three classical 

benchmarked functions 

Parameter 
F5 F6 F13 

Value Value Value 

1   0.06744712 0.029785 0.02728 

2 p 0.2903912 0.38725 0.45861 

3 w1 0.7941491 0.56282 0.45134 

4 w2 0.2115948 0.48619 0.0038396 

5 HMCR 0.08632188 0.51944 0.53381 

6 PAR 0.8558247 0.58075 0.31759 

7 Neighbor 0.8414693 0.88721 0.64264 

8 Memory_size 1 3 1  [
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Table 5: Evaluation of EVPS and SA-EVPS results for the 72-bar spatial truss 

 
F5 F6 F13 

EVPS SA-EVPS EVPS SA-EVPS EVPS SA-EVPS 

Best weight  37.7759788 0.17620538 5.3183E-05 6.715E-19 0.00017724 5.3672E-15 

Worst weight  2606.9576 428.554252 0.12163476 7.4583E-11 1.59782395 3.64141345 

Average weight 357.777465 112.213601 0.00513199 2.6297E-12 0.07729826 0.51374684 

STD 535.464537 97.6568764 0.0216576 1.3367E-11 0.28864004 0.90305428 

 

 
(a) 

 
(b) 

Figure 8. Convergence curves for 30 independent runs of the F5 function are shown in Table 3. 

(a) graph in linear form, (b) graph in Solid form 
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(a) 

 
(b) 

Figure 9. Convergence curves for 30 independent runs of the F6 function are shown in Table 3. 

(a) graph in linear form, (b) graph in solid form 

 

 
(a) 
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(b) 

Figure 10. Convergence curves for 30 independent runs of the F13 function are shown in Table 3. 

(a) graph in linear form, (b) graph in Solid form 

 

 

5. CONCLUSION 
 

The EVPS algorithm has been successfully applied to a variety of optimization problems to 

date. As with many metaheuristic algorithms, the EVPS algorithm comprises parameters 

such as  , p, w1, w2, HMCR, PAR, Neighbor and Memory_size  that are experimentally 

determined. These parameters are usually recommended by the algorithm's provider by 

default. The effect of each of these parameters on the optimal solution was investigated in 

this study. This investigation led to the development of a self-adaptive process known as the 

SA-EVPS algorithm. Two EVPS and SA-EVPS algorithms were examined for the 72 bar 

spatial truss structure and three classical benchmarked functions, and the results indicated 

that the SA-EVPS algorithm performed better in terms of convergence speed and solution 

quality. There is a suggestion to use the SA-EVPS algorithm for other types of optimization 

problems. 
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