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ABSTRACT 
 

This article presents numerical studies on semi-active seismic response control of structures 

equipped with Magneto-Rheological (MR) dampers. A multi-layer artificial neural network 

(ANN) was employed to mitigate the influence of time delay, This ANN was trained using 

data from the El-Centro earthquake. The inputs of ANN are the seismic responses of the 

structure in the current step, and the outputs are the MR damper voltages in the current step. 

The required training data for the neural controller is generated using genetic algorithm 

(GA). Using the El-Centro earthquake data, GA calculates the optimal damper force at each 

time step. The optimal voltage is obtained using the inverse model of the Bouc-Wen based 

on the predicted force and the corresponding velocity of the MR damper. This data is stored 

and used to train a multi-layer perceptron neural network. The ANN is then employed as a 

controller in the structure. To evaluate the efficiency of the proposed method, three- story, 

seven- story and twenty-story structures with a different number of MR dampers were 

subjected to the Kobe, Northridge, and Hachinohe earthquakes. The maximum reduction in 

structural drifts in the three-story structure are 13.05%, 39.90%, 15.89%, and 8.21%, for the 

El-Centro, Hachinohe, Kobe, and Northridge earthquakes, respectively. As the control 

structure is using a pre-trained neural network, the computation load in the event of an 

earthquake is extremely low. Additionally, as the ANN is trained on seismic pre-step data to 

predict the damper's current voltage, the influence of time lag is also minimized. 
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1. INTRODUCTION 
 

In the last two decades, semi-active vibration control of civil engineering structures has been 
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an active research discipline, and various methods have been proposed to reduce life-loss 

and significant damages to the structure. In this regard, numerous instruments and 

algorithms have been proposed. The control instruments and algorithms used in the 

structures can be classified into four categories: passive control [1-3], active control [4,5], 

semi-active control [6] and hybrid control [7]. Instruments used in the semi-active control do 

not require a significant amount of energy [6]. As a result, systems equipped with this 

control mechanism can be considered to be more stable. Among the instruments used for 

semi-active structural control, magneto-rheological dampers have attracted considerable 

attention in recent years. Utilizing these instruments can significantly reduce the structure's 

response to an earthquake and therefore, MR dampers can be considered as one of the 

reliable devices for semi-active control of structures. These dampers were first used in the 

national museum of science and innovation in Tokyo in 2001 [2]. MR dampers with a 

capacity of 30 tons were installed in the structure's fifth and seventh stories. Xu et al. used 

MR dampers to control a twelve-story structure using the El-Centro earthquake data [8]. The 

results indicated that the acceleration and displacement of the structure at different stories 

are significantly reduced. The resistant force exerted on the structure by these instruments is 

proportional to the relative velocity at the damper location and the instrument's input 

voltage.  

Numerous mathematical models have been proposed to simulate the damper's behavior. 

Dominguez et al. proposed a bar element with node connections composed of five different 

materials to simulate the damper's dynamic behavior [9]. This model was used in the finite 

element model of a cantilever 3-D space truss structure with four bays exposed to different 

excitations. In addition, the Bingham model, the modified Bingham model, the Bing-Max 

model, the three-element model and the Bouc-Wen model are other numerical solutions to 

simulate the dampers' behavior [10]. Many algorithms have been proposed and implemented 

to control the structures in the semi-active control system. These techniques are classified 

into two categories: parametric [11] and numerical [12]. In the parametric method, the 

system's behavior is controlled using the mathematical equations of the system's control 

model. Parametric methods include second-order linear regulator [13], Gaussian second-

order linear approach [14-16], and sliding mode control [17]. The second group are data-

based models and does not require an explicit mathematical model.  

Soft computing methods have been used in many applications for active and semi-active 

control of structures. The application of different types of neural networks [18, 19], fuzzy 

logic [20] and their combination in the fuzzy-neural algorithm [21] has been very effective 

in structural control systems. These algorithms can be used as controllers [22], structural 

behavior simulators [23] and MR damper modeling [24]. Neural networks are one of the 

most widely used soft computing methods across all fields of civil engineering and have 

been applied in various applications [25-30]. Using neural network as an analysis tool 

alleviates some of the computational load [25,26]. Additionally, neural networks are quite 

effective at forecasting the behavior of materials [27] and structural members [28]. ANNs 

have also been used successfully for real-time analysis of dam monitoring data [29, 30].  

Due to the complexity of modeling structures' seismic behavior and the dampers used in 

structural control, ANNs have found many applications in the field of structural control. 

Ghabousi and Joghataie were pioneers in using neuro-controller in the field of structural 

control [31]. In their research, the ANNs were used for active control of a three-story 
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structure. The ANNs were trained so that the structure's behavior could be predicted in the 

next step. Bani Hani et al. have used ANNs for the semi-active control of structures [14]. 

The Gaussian second-order linear method was used to control the structure and calculate the 

appropriate control force. One of the challenges in using MR dampers is determining the 

optimum MR damper voltage according to the design criteria [32]. The wavelet neural 

network-based semi-active controller has been used successfully to provide the accurately 

computed input voltage of the MR dampers and to generate the optimal control force [33]. 

The parameters of ANN were optimized by a modified GA and the optimized ANN was 

used to control a nine-story benchmark structure. Bitaraf et al. applied a genetic-based fuzzy 

controller to determine the command voltage of the MR dampers [34]. A multi-objective GA 

is used to optimize the fuzzy logic controller rule-base to reduce the displacement and 

acceleration response of the considered structure. Zabihi et al. controlled a three-story 

structure using the Cuckoo-Fuzzy algorithm [35]. They suggested a novel evolutionary 

algorithm based on cuckoo search to determine the optimal location and number of dampers. 

In structural control, time delay reduces the efficiency of the proposed methods [36]. 

Katebi et al. proposed a time-delay compensation method in coupled structures using the 

Newmark-beta formulation. Lyapunov's direct algorithm was used to determine the 

appropriate control force. Time delay always reduces the efficiency of the control systems. 

The present research offers a novel approach to overcome this deficiency. We propose using 

a neural network to predict the appropriate voltage of the dampers in the next time step  

In the present article, to mitigate the influence of time delay on structure control, a genetic 

algorithm and two kinds of ANN were used for semi-active control of structures equipped with 

MR dampers. The data required for ANN training is generated using a GA. When the structure is 

subjected to the El-Centro earthquake, the GA is executed at each time step to minimize the 

structure’s maximum drift. Optimization variables are the force required to control the structure. 

Using the force obtained by the GA and the dampers' velocity, the required voltage for the 

dampers can be calculated using the dampers' inverse model. The ANN's input is composed of 

structural responses at each time step. The voltage required by the dampers in the next step 

forms the ANN's output. Three benchmark structures are used to evaluate the efficiency of the 

proposed methodology. Each structure is evaluated twice with a different number of dampers to 

determine the effect of increasing dampers on the structure's control.  
This article is divided into four sections. The introduction is presented first. The second 

section describes the applied algorithms and analysis methods. In section 3, six numerical 

examples are analyzed, and the results of seismic responses of several structures controlled 

by the proposed methodology are presented. Section 4 concluded the paper. 

 

 

2. METHODOLOGY 
 

The control force of the MR damper depends on the input voltage and the difference of 

velocity at its two ends. The damper's behavior can be controlled by changing the input 

voltage. In this research, the back-propagation ANN is used to predict the required voltage 

of the dampers. Fig. 1 depicts the control process diagram.  
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Figure 1. The flow of the semi-active control structure 

 

The accelerogram of the El-Centro earthquake is used to obtain the training data. For this 

purpose, the structure is subjected to the El-Centro earthquake, and the required control 

force is calculated by the GA. It is assumed that the acceleration in the current step of 

analysis is available. Although this value is not available when the earthquake occurs, this 

assumption is made to provide the training data. For example, if the structure is equipped 

with two dampers, two control forces in each time step are calculated by the GA. 

Subsequently, using the damper force and the relative velocity of both ends at each time 

step, the required voltage is obtained from the inverse model of the damper. The inverse 

model is a lattice neural network. The damper's speed and force as inputs, this neural 

network can predict the corresponding damper's voltage. Therefore, the previous time step's 

seismic responses of the structure and the current time step's corresponding voltage of the 

MR dampers are available. By inputting structural responses, the multi-layer perceptron 

neural network is trained to predict the corresponding voltage of the dampers. Fig. 2 shows 

the flow of the semi-active control structure. 

Fast learning and convergence to the optimal regression surface are two main advantages 

of GRNN when the number of samples is very high [37]. GRNN is especially useful in 

modelling sparse data in a real-time environment. 

The GRNN can be regarded as a normalized radial basis function (RBF) network in 

which there is a remote unit concentrated on each training example [38]. This neural 

network is a one-pass learning algorithm with a parallel structure, and this feature results in 

the high speed of the neural network. Fig. 3 shows a schematic pattern of the neural 

network.  
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Figure 2. The flow of the semi-active control structure and the ANN training 

 

 
Figure 3. A schematic pattern of the GRNN architecture 
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The input units are in the first layer; the pattern units are in the second layer; in the third 

layer, the outputs of this layer are passed on to the summation units, and the output units are 

in the final layer. In the first layer, the number of neurons is the same as the number of 

attributes. The first-layer weights are adjusted to the transpose of the input vector, and the 

bias b is adjusted to the column vector of 0.8326/𝜎. The smoothness parameter 𝜎 is 

selected by the user. The second layer also has as many neurons as input vectors. The 

hidden-to-output weights are just the response values; hence, the output is defined as a 

weighted average of the target values of the training cases close to the assumed input case, 

based on the weights corresponding to the Euclidean distances between the training input 

vectors and the test input vector. 

 

�̂�(𝑥) = 𝐸(𝑦|𝑥) =
∑ 𝑦𝑖ℎ𝑖

𝑛
𝑖=1

ℎ𝑖

,    ℎ𝑖 = exp (−
𝑑𝑖

2

2𝜎𝑖
2) 𝑑𝑖

2 = (𝑥 − 𝑥𝑖)
𝑇(𝑥 − 𝑥𝑖) (1) 

 

where the Gaussian radial basis function is shown by ℎ𝑖, the smoothing parameter is shown 

by s, and 𝑑𝑖
2 denotes the squared euclidean distance between a test input vector x and 𝑥𝑖. 

 

2.1 Genetic algorithm 

The GA used in this article obtains the force of each damper to minimize the maximum drift 

of the structure. Therefore, the number of optimization variables is equal to the number of 

dampers in the control structure. Hence, the size of the population members depends on the 

number of dampers used in the control structure. In the numerical examples, the number of 

dampers changes. For this reason, the GA used is described in all numerical examples. The 

values of crossover fraction and function tolerance are 0.8 and10−6, respectively. In using 

the GA to determine the proper damper force, it is assumed that the earthquake acceleration 

in the following step is known. The Newmark-Beta method is used for the dynamic analysis 

of the structure. The fitness function of the GA is obtained by solving the equations from a 

time step. The structural responses at the previous step form the initial conditions for the 

current step. Fig. 4 shows the calculation of the force of dampers by the GA.  

 

 
Figure 4. A schematic diagram of the way the control force is calculated by GA 

 

In Fig. 4, the displacement, velocity, and acceleration of the structure in time step i are 

represented by {𝑈}, {�̇�} and{�̈�}, respectively. In addition, {𝑓}𝑖 and 𝑈𝑔𝑖
̈  represents the 
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earthquake's acceleration. The structural responses and the optimal control force of dampers 

were saved after all steps of the earthquake were analyzed, and subsequently they were 

utilized to simulate the inverse behavior of dampers in the next step. 

 

2.2 Simulation of the inverse behavior of dampers with GRNN 

GRNN calculates the corresponding voltage using the damper force and velocity of the 

structural stories as input variables. By obtaining the difference of the velocity in the stories 

in which the ends of the dampers are located, the relative velocity of both ends of the 

damper is calculated. The Bouc-wen mathematical model is then used to simulate the 

behavior of the damper. The equations are defined as follows[32].  

 

𝑓 = 𝑐0�̇� + 𝛼𝑧 (2) 

�̇� = −𝛾|�̇�|𝑧|𝑧|𝑛−1 −  𝛽�̇�|𝑧|𝑛 + 𝐴�̇� (3) 

𝛼 = 𝛼𝑎 + 𝛼𝑏𝑢 (4) 

𝑐0 = 𝑐0𝑎 + 𝑐0𝑏𝑢 (5) 

 

The parameters' values are given as follows.  

 

𝛼𝑎 = 1.0872𝑒2 
𝑁

𝑐𝑚
 (6) 

𝛼𝑏 = 4.9616𝑒5 
𝑁

𝑐𝑚. 𝑉
 (7) 

𝐶0𝑎 = 4.40
𝑁. 𝑠

𝑐𝑚
 (8) 

𝐶.𝑏 = 44.0
𝑁. 𝑠

𝑐𝑚. 𝑉
 (9) 

𝜂 = 50𝑠−1 (10) 

𝛾 = 3 𝑐𝑚−1 (11) 

𝛽 = 3 𝑐𝑚−1 (12) 

𝐴 = 1.2 (13) 

 

The steps of the voltage are considered to be 0.1 volts. If higher accuracy is required, this 

value can be decreased, but the cost of computations also increases. As it was mentioned in 

the previous section, the control force of the damper was computed by the GA. By 

performing the time history analysis, the structural responses are also obtained. As the 

velocity and force of the MR damper are now available. Using GRNN as described in the 

following model, the corresponding voltage can be calculated.  
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Figure 5. The way the closest points to the point of interest are found to train the GRNN 

 

As shown in Fig. 5, the velocity and the corresponding force are inputs of latticed 

GRNN. 𝑉0 and 𝑓0 are the velocity and the corresponding force, respectively. First, the 

closest value to 𝑣0 is obtained. In other words, 𝑣0 value is limited to two values in the 

network. These two values are denoted by 𝑣1and 𝑣2. Then, this is done for the force 

corresponding to these values. The values are determined by 𝑓11, 𝑓21, 𝑓12 and 𝑓22 in Fig. 5. 

Now, four points with the least distance to the input point, (𝑣0, 𝑓0), are determined. 

In this step, the goal is to obtain the voltage corresponding to the points 𝑣0 and 𝑓0. GRNN 

is used to calculate the voltage corresponding to the input point regarding these four points. 

The training data are the coordinates of four points A, B, C, and D. A GRNN is trained by 

coordinates of force and velocity of the points and the target data is the third coordinate of 

the points or the equivalent voltage. After training, the network can predict the voltage 

corresponding to the data of the force and velocity(𝑣0, 𝑓0).  

 

2.3 Prediction of the dampers' voltage 

Thus far, the structural responses and optimal control forces, as well as the voltage 

corresponding to the force, have been determined in accordance with the earthquake's 

acceleration at each time step. The multi-layer ANN is subsequently used to predict the 

appropriate voltage using these values. The network's architecture varies according to the 

number of inputs and outputs. As a result, the network architecture that is most appropriate 

for each numerical case is selected. There are one or two hidden layers in the networks. The 

layer's total number of neurons is determined by analyzing ANNs for each numerical 

example. Each network is run multiple times and the ANN having the best performance is 

used to evaluate the network's efficiency. The network's input consists of the displacement, 

velocity, and acceleration of the stories, as well as the velocity of dampers. For example, in a 

numerical example involving a three-story structure, the input vector contains twelve 

Force  

Velocity  
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components. The output of the network is the voltage of the dampers; thus, in a three-story 

structure, this vector has three components.  

 

2.4 Dynamic analysis of the structure  

The differential equation governing the motion of the structure was solved using the 

Newmark-β formulation. At each time step, these equations are solved. Following the 

calculation of structural responses at each step, the control force can be calculated. In 1959, 

Newmark introduced the following equations as a class of time step formulations [39]. 

 

�̇�𝑗+1 = �̇�𝑗 + [(1 − 𝛾)𝛥𝑡]�̈�𝑗 + (𝛾𝛥𝑡)�̈�𝑗+1 (14) 

𝑢𝑗+1 = 𝑢𝑗 + 𝛥𝑡�̇�𝑗 + [(0.5 − 𝛽)𝛥𝑡2]�̈�𝑗 + (𝛽𝛥𝑡2)�̈�𝑗+1 (15) 

 

In these equations, �̈�𝑗+1, 𝑢𝑗+1 and �̇�𝑗+1 are the acceleration, displacement, and velocity of 

the stories of the structure, respectively. The constant length of the time interval is denoted 

by t . The factors  and  denote the variations of the acceleration at each time step, and 

the stability and accuracy of the formulation. The values 1/2 and 1/6 are used for  and  , 

assuming linear variations of the acceleration at each time step. The equations (14), (15), 

and the motion equation of the structure at the end of the time step are used to calculate 

𝑢𝑗+1, �̇�𝑗+1 and �̈�𝑗+1 at the time i+1 from 𝑢𝑗, �̇�𝑗 and �̈�𝑗. Iterations are required to complete the 

analysis because �̈�𝑗+1 is in the right-hand side of the equations (14) and (15). In this article, 

the behavior of the frame is assumed to be linear. In the linear systems, the Newmark 

formulation can be simplified by using parameter differences instead of their values in time 

steps. This is performed by changing the quantities as follows.  

 

𝛥𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖 (16) 

𝛥�̇�𝑖 = �̇�𝑖+1 − �̇�𝑖 (17) 

𝛥�̈�𝑖 = �̈�𝑖+1 − �̈�𝑖 (18) 

𝛥𝑝𝑖 = 𝑝𝑖+1 − 𝑝𝑖 (19) 

 

In the above equations, ∆𝑢𝑖 is the change in displacement, ∆�̇�𝑖 is the change in velocity, 

∆�̈�𝑖 is the change in acceleration, and ∆𝑝𝑖 is the change in force at i-th time step. By using 

the formulations, the equations (14) and (15) and the motion equation of the structure can be 

rewritten as follows.  

 

𝛥�̈�𝑖 = (
1

𝛽(𝛥𝑡)2
) 𝛥𝑢𝑖 − (

1

𝛽𝛥𝑡
) �̇�𝑖 − (

1

2𝛽
)�̈�𝑖 (20) 

𝛥𝑢𝑖̇ = (
𝛾

𝛽𝛥𝑡
) 𝛥𝑢𝑖 − (

𝛾

𝛽
) �̇�𝑖 − 𝛥𝑡(1 −

𝛾

2𝛽
)�̈�𝑖 (21) 

𝑚𝛥�̈�𝑖 + 𝑐𝛥�̇�𝑖 + 𝑘𝛥𝑢𝑖 = 𝛥𝑝𝑖 (22) 

 

The changes in structural responses are determined by employing these equations at each 

time step. By using the structural responses at the beginning of the time step, the values at 

the end of the step are calculated.  
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2.5 Evaluation indices  

In the numerical examples investigated in the next section, the structure is controlled with a 

different number of dampers. To measure the performance of the proposed control 

mechanism, the following performance indices are used [40]. 

 

𝐽1 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥𝑡,𝑖 |

𝑑𝑖(𝑡)
ℎ𝑖

⁄ |

ϭ𝑚𝑎𝑥

} (23) 

𝐽2 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥𝑡,𝑖|�̈�𝑎𝑖(𝑡)|

�̈�𝑚𝑎𝑥

} (24) 

 

The index 𝐽1 is related to the maximum drift of the stories. In the equation (23), 𝑑𝑖(𝑡) 

denotes the internal relative displacement of the structure and 𝜎𝑚𝑎𝑥 is its maximum value in 

the uncontrolled state. 𝐽2 index is related to the maximum acceleration. The parameters �̈�𝑎𝑖 

and �̈�𝑚𝑎𝑥 are the acceleration of the i-th story at each time step in the controlled state and 

the maximum acceleration in the uncontrolled state, respectively. It should be noted that the 

GA is employed to minimize the performance index 𝐽1 when the structures are exposed to 

the El-Centro earthquake. 

 

 

3. NUMERICAL EXAMPLES 
 

In this section, three-, eleven- and twenty-story structures are examined with a different 

number of dampers. In each numerical example, the features of the structure are stated. 

Moreover, appropriate charts and tables are presented to demonstrate the efficiency of the 

presented methodology. 

 

3.1 The first numerical example 

This numerical example examines the efficiency of the proposed methodology to control a 

three-story structure. The mass of each story is 
54 10  kg, and its stiffness is 

81.6 10  

N/m [41]. Four dampers are installed in the structure. Two dampers are placed in the first 

story, and one damper is placed in other stories. The damping matrix of the structure was 

obtained by the Rayleigh method so that the damping of the first and second vibration 

modes of the structure is 5%. First, the force of each damper is computed by the acceleration 

in the next step using the GA. This was done for data of the El-Centro earthquake. The plot 

of the control force of the damper in the third-story is depicted in Fig. 6. The plot 

corresponds to the first 8 seconds of the El-Centro earthquake. 

 



SEMI-ACTIVE NEURO-CONTROL FOR MINIMIZING SEISMIC … 57 

 
 

Figure 6. The required control force of the damper in the third-storey 

 

The time interval of the sampling is 0.02 s. By using the required control force and the 

velocity of the structure's stories, the voltage of the dampers is obtained at each time step by 

the proposed methodology. The voltage-time plot of the damper in the third-story is 

presented in Fig. 7.  

 

 
 

Figure 7. Required voltage of the damper in the third-story 

 

3.1.1 ANN predicting the voltage  

The ANN is used to predict the voltage. The ANN's input is the structural responses, and its 

output is the dampers' voltage in the next step. The voltages required for two dampers in the 

Sampling step 

 

Voltage 

(volt)  

Force (N) 

Sampling step 
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first story are assumed to be equal. Therefore, the output of the ANN is a vector with three 

components. Displacements, velocities, acceleration, and velocity of dampers are used as the 

input of the ANN and therefore, the input vector has twelve components. Two thousand four 

hundred data of the El-Centro earthquake and the equivalent structural responses are used to 

train and test the ANNs. Seventy percent of these data are used for training the ANN, and 

the remaining data is used for testing the ANN. In Fig. 8, the actual and predicted values of 

the voltage of the third-story damper are compared. 

 

 
 

 
Figure 8. Comparison of the predicted voltage and the required voltage of the damper in the 

third-story 

 

Eighteen different ANNs are examined with different number of layers and neurons to 

achieve the best results. Table 1 presents the means squared errors and the number of 

neurons in the hidden layer of the corresponding ANN. The results related to six ANNs 

having the best performance are shown in Table 1. It should be mentioned that each ANN is 

trained fifteen times. 

 
Table 1: Architecture and error of ANNs 

Number of neurons 

in the hidden layer 

Mean squared error in ten training and testing NN 

Training Testing 

Average Best Average Best 

15 0.2031 0.1732 0.1441 0.0827 

20 0.2003 0.1587 0.1458 0.0598 

25 0.2006 0.1706 0.1572 0.0932 

30 0.2026 0.1771 0.1646 0.1120 

35 0.2059 0.1629 0.1728 0.1084 

 

Due to the importance of the ANN prediction in the presented methodology, an ANN is 

used in the control structure that has the best performance to predict the voltage. Results 

presented in table 1, indicate that an ANN with 20 neurons in the hidden layer has the best 

performance. Therefore, this ANN is used in the control structure. 

 

Testing data Training data data 

Voltage

(volt)  
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3.1.2 Semi-active controller 

After training the ANN, the ANN is used to predict the voltage of the dampers in the current 

step by using the structural responses in the previous step. It is emphasized that the training 

data of the ANN were obtained when the structure was subjected to the El-Centro 

earthquake. For this reason, other earthquakes such as Northridge, Hachinohe, and Kobe are 

also used to test the efficiency of the proposed methodology. Two criteria related to drift and 

absolute acceleration described in section 2.6 are used for evaluating the efficiency of the 

proposed methodology. 

 
Table 2: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.9143 0.9297 

Kobe 0.8695 0.8797 

Hachinohe 0.6576 0.7919 

Northridge 0.9099 0.9493 

Average of four 

earthquakes 
0.8378 0.8876 

 

As shown in Table 2, the proposed control method can control the structure's behavior 

and reduce the drifts and accelerations. Although the data of the El-Centro earthquake is 

used to prepare the training data of the ANN, the proposed control method has also been 

effective when the structure is excited by other earthquakes. On average, the presented 

method has reduced the drift criterion to 16.22%. It should be noted that although the 

training data were obtained to reduce the maximum drift of the stories, acceleration has also 

been decreased. 

 

3.2 The second numerical sample  

In the second example, the three-story structure of the first numerical example is 

reexamined. In this example, six dampers are used to control the structure's responses. In 

other words, the effect of the increase in the control power will be examined on the behavior 

of the previous structure. Two dampers are placed in each story of the structure. Damping of 

the first two modes of the structure is 5% that is the calculated Rayleigh method. The 

structural control process is the same as the first numerical example. The force calculated 

using the GA for controlling the structure's responses is equal to the value calculated in the 

numerical example. The only difference is that the force must be provided at each story with 

two dampers. The purpose of the numerical example is to use a more significant control 

force to control the structure's behavior. The diagram of the voltage of the damper in the 

third-story is presented in Fig. 9. This figure shows the voltage of a damper. The voltage of 

the second damper is also equal to this value because the force of the dampers is the same at 

each story. 
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Figure 9. The voltage of the damper at the roof in the first 8 seconds of El-Centro earthquake 

 

According to the plot presented in Fig. 9, it is noted that the damper works with its 

maximum power at certain times. Hence, it is deducted that using two dampers may be more 

useful in the story. The architecture of the ANN, the input and output data, are the same as 

the first numerical example. The ANN in the control structure and the evaluation indices of 

the structure under the effect of the El-Centro, Northridge, Kobe, and Hachinohe 

earthquakes are presented in Table 3. 

 
Table 3: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.8695 0.8891 

Kobe 0.8411 0.8275 

Hachinohe 0.6010 0.7644 

Northridge 0.9179 0.9268 

Average of four earthquakes 0.8065 0.8645 

 

Comparing the results of the first and second examples, it can be noted that the average 

index of the maximum drift of the stories in the second example is about 3% more than the 

equivalent value in the first numerical example. Also, the index of the maximum 

acceleration of the stories has decreased up to 2%.  

 

3.3 The third numerical example 

In this numerical example, an eleven-story structure is used. Mass and stiffness of each story 

of the structure are given in Table 4. Damping of the structure is obtained by the Rayleigh 

method so that damping of the first and second modes of the structure is 2% [22]. The 

natural period of the structure is 0.86 seconds.  

Sampling step 

Voltage 

(Volt) 
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Table 4: Mass and stiffness of the structure's stories 

Number of stories Mass of story (Kg) Stiffness of the structure's stories (KN/m) 

1 4.68 × 105 215370 

2 4.76 × 105 201750 

3 4.5 × 105 201750 

4 4.5 × 105 200930 

5 4.5 × 105 200930 

6 4.5 × 105 200930 

7 4.37 × 105 203180 

8 4.37 × 105 202910 

9 4.37 × 105 202910 

10 4.37 × 105 176100 

11 3.12 × 105 66230 

 

In this numerical example, a damper is used in all stories of the structure. The ANN used 

in the control structure is the same as the previous numerical examples, i.e., it is the multi-

layer perceptron neural network. The ANN has 44 neurons in the input layer. The voltage of 

the damper in each story is in the output layer. Therefore, the output layer has 11 neurons. 

Several ANNs with different number of neurons in hidden layers are investigated to obtain 

the best architecture. The mean squared error of training and testing data in ten different runs 

of ANNs is presented in Table 5. 

 
Table 5: Number of neurons in the hidden layers and mean squared error of ANNs 

Number of neurons 

in the hidden layers 

Mean squared error in ten training and testing ANNs 

Training Testing 

Average Best Average Best 

11-11 0.1696 0.1571 0.0475 0.0419 

15-11 0.1704 0.1570 0.0499 0.0401 

15-14 0.1629 0.01401 0.0486 0.0352 

16-12 0.1698 0.1452 0.0513 0.0367 

20-11 0.1660 0.1349 0.0501 0.0358 

 

According to the results presented in Table 5, it can be seen that an ANN with 20-11 

neurons in the first and second hidden layers has a good performance in predicting voltage. 

Hence, this ANN is used in the control structure. The evaluation indices are presented in 

Table 6. 

 
Table 6: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.5823 0.8548 

Kobe 0.7610 0.9294 

Hachinohe 0.5740 0.7359 

Northridge 0.8081 0.9381 

Average of four earthquakes 0.6813 0.8645 
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The proposed method has been very effective as the maximum drift of the structure has 

been decreased. It can be observed that J1 has decreased in all earthquakes. The average 

value of the indices of drift and acceleration is 0.6813 and 0.8645, respectively, 

demonstrating an acceptable reduction in the displacements and accelerations using the 

proposed methodology. 

 

3.4 The fourth numerical example  

In this numerical example, an eleven-story structure is selected again whose features are 

examined in the previous example, but the number of dampers is different from the third 

example. In the same manner as previous examples, the required force of dampers is 

obtained by the GA to reduce the relative displacement of the structure. The number of 

optimization variables is equal to the number of degrees of freedom of the structure. The 

population size is set at 40, and data recorded in the El-Centro earthquake is used. To control 

the structure, two dampers are placed in the stories one to ten, and one damper is placed in 

the eleventh story. Features of the damper are similar to the previous numerical example. 

The performance indices are given in Table 7 for the El-Centro, Northridge, Kobe, and 

Hachinohe earthquakes.  

 
Table 7: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.4135 0.8489 

Kobe 0.6976 0.9365 

Hachinohe 0.4096 0.8351 

Northridge 0.8012 0.9080 

Average of four earthquakes 0.5805 0.8821 

 

By comparing the results presented in Tables 6 and 7, it can be noted that as the number 

of dampers increases, the system's ability to control the structural responses also increases.  

 

3.5 The fifth numerical example  

This numerical example considers twenty-story benchmarks equipped with dampers. Two 

dampers are used in the first and second stories, and one damper is placed on the other 

floors. The seismic mass of the first floor is one, the seismic mass of the second to 

nineteenth floors is two, and the seismic mass of the structure's roof floor is three. The 

number of optimization variables equals the number of forces applied to the structure by the 

dampers, which is 20 in this example. The population size of GA is set as five times the 

number of variables and equal to 100. The GA determines the appropriate damper force to 

reduce the structure's maximum drift under the impact of the El-Centro earthquake. After 

examining ANNs with varying numbers of neurons are examined and the optimal ANN is 

chosen to be used as a controller. Due to the random selection of ANN weights, each ANN 

was evaluated ten times and the best ANN was then selected. Table 8 displays the mean 

squared error of each ANN for training and testing data. An ANN with 80-40 neurons in the 

first and second hidden layers has the best performance and is selected as the controller. 
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Table 8: The performance indices when the structure is excited by several earthquakes 

Number of neurons 

in the hidden layer 

Mean squared error in ten training and testing NNs 

Training Testing 

Average Best Average Best 

70-30 0.1324 0.0128 0.0588 0.0425 

75-30 0.1560 0.1445 0.0574 0.0506 

75-38 0.1567 0.1444 0.0603 0.0485 

80-40 0.1324 0. 1280 0.0588 0.0425 

80-45 0.1562 0.1335 0.0620 0.0444 

 

The controller composed of the selected ANN is assessed under the influence of the El-

Centro, Kobe, Northridge, and Hachinohe earthquakes. The criteria of maximum 

acceleration and maximum drift are listed in Table 9. 

 
Table 9: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.6296 2.5279 

Kobe 0.7978 1.0145 

Hachinohe 0.7284 0.9404 

Northridge 0.9865 0.9965 

Average of four earthquakes 0.7855 1.3697 

 

El-Centro and Hachinohe earthquakes are far-fault and Northridge and Kobe earthquakes 

are near-fault. As demonstrated by the presented data in Table 9, the presented method is 

more efficient in far-faults earthquakes (El-Centro and Hachinohe). 

 

3.6 The sixth numerical example  

In this example, two dampers are placed on the first to fifth floors and one damper is placed 

on the other stories. This structure is controlled by the same ANN used in the fifth example. 

Table 10 illustrates the control criteria when the structure is subjected to multiple 

earthquakes. 

 

Table 10: The performance indices when the structure is excited by several earthquakes 

Earthquake  J1 J2 

El-Centro 0.66.6 10.496 

Kobe 0.7481 0.9909 

Hachinohe 0.6377 1.2769 

Northridge 0.9048 1.035 

Average of four earthquakes 0.7378 1.0881 

 

Criteria 𝐽1 and 𝐽2 presented in table 10 make the comparison between the controlled and 

uncontrolled structures. Table 11 compares the results of the controlled structure for 20-story 

structure with the results published in Ohtori et al. [40]. This table displays the results of two 

numerical examples (fifth and sixth examples), as well as the results of Ohtori et al. [40]. 
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Table 11: Comparison the method described in Ohtori et al. [40] with the neural controllers used 

in this article 

Earthquake  𝐽1 𝐽2 

El-Centro 

1 0.6296 2.5279 

2 0.6606 1.0496 

3 [40] 0.748 0.646 

Kobe 

1 0.7978 1.0145 

2 0.7481 0.9909 

3 [40] 0.728 0.839 

Hachinohe 

1 0.7284 0.9404 

2 0.6377 2769 

3 [40] 0.887 0.743 

Northridge 

1 0.9865 0.9965 

2 0.9048 1.035 

3 [40] 0.942 0.904 

 

The numbers 1, 2, and 3 in this table denote the fifth numerical example, the sixth 

numerical example, and the results published by Ohtori et. al [40]. These results demonstrate 

that the proposed control methodology significantly reduces structural seismic responses. 

The displacement of the structure's roof during the El-Centro and Kobe earthquakes is 

depicted in Fig. 10 in the controlled and uncontrolled states. 

 

 
Figure 10. Roof displacement during the El-Centro earthquake as a result of the dampers 

distribution used in the sixth numerical sample 
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4. CONCLUSION 
 

In this article, a methodology using the genetic algorithm and two different kinds of ANNs 

was proposed for semi-active control of structures equipped with MR dampers. Six 

numerical examples of three- story, eleven- story, and twenty-story structures were used to 

demonstrate the efficiency of the proposed methodology., The proposed neuro-controller is 

trained to predict the required voltage for the MR dampers by receiving the responses from 

the previous earthquake step. As the amount of damage to the structure is proportional to the 

maximum drift of structure, the objective function of the genetic algorithm in all provided 

examples is defined as minimizing the maximum drift. As the Genetic algorithm is used to 

obtain the data required for ANN training with the objective of minimizing the maximum 

structural drift at each earthquake time step, the preparation of training data is time-

consuming. However, it should be noted that as this step is included in the process of 

preparing the controller, it has no adverse effect on the structural control process. 

The results of six numerical examples demonstrated a significant reduction in the 

maximum drift in the controlled state of all structures.The results of the twenty-story 

structure were compared with previously published results [40]. These results shows that the 

rate of reduction in the maximum drift of the structure in Hachinohe and El-Centro 

earthquakes is 36.23 and 33.94 percent, respectively. This value is equal to 26.19 and 9.52 
percent in Kobe and Northridge earthquakes, respectively. 
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