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ABSTRACT 
 

Heavy economic losses and human casualties caused by destructive earthquakes around the world 
clearly show the need for a systematic approach for large scale damage detection of various types of 
existing structures. That could provide the proper means for the decision makers for any 
rehabilitation plans. The aim of this study is to present an innovative method for investigating the 
seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For 
this purpose, a number of 2-D structural models with varying number of bays and stories are 
designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The 
seismically–induced damages to these structural models are determined by performing extensive 
nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for 
dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the 
structural models. A database is generated using the level of induced damages versus different 
parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties 
of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate 
the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural 
networks are trained for estimation of the probable seismic damage index.  
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1. INTRODUCTION 
 

Our knowledge from the earthquakes and their destructive effects on structures has been improved 
greatly during the last few decades. Accordingly, the seismic design provisions necessary for the 
design of new buildings and rehabilitation of the existing structures have been witnessing rapid 
changes. The concept of performance based design now is present in many seismic design codes 
and guidelines. However, determining the vulnerability of the existing structures that have been 
designed and built using the previous Codes remains a great challenge. 

 In the current state of the practice, the structures are designed to withstand the minor to 
moderate earthquakes by remaining within their elastic range. For larger earthquakes, the 
inelastic response of the structural elements provides a mechanism for dissipation of the input 
energy. Therefore, it is important to identify the level of damage for the structures undergoing 
inelastic deformation during an earthquake episode. A large body of literature is available on 
evaluating the amount of the seismic damage imposed to the structures, using different 
measures[1-4]. Not surprisingly, numerous local and global damage indices have been 
introduced ever since, to determine the remaining capacity of the system after the earthquake 
event[1-4]. Depending on the number of damage states considered, the vulnerability of the 
existing structures can be evaluated accordingly. These damage states can be used for post 
earthquake damage evaluation of the structures, performance prediction of the newly designed 
buildings, and reliability analysis of existing buildings and facilities. 

In his method, Rytter[5] distinguishes four levels of damage detections as the following; 
Level 1 (Detection), that provides a qualitative indication that damage might be present in the 
structure; Level 2 (Localization), which gives information about the probable position of the 
damage; Level 3 (Assessment), that provides an estimate of the extent of the damage; Level 4 
(Consequence), which offers information about the safety of the structure. Doebling and 
Farrar[3] classified the structural damages into linear and nonlinear categories. Linear damage 
indicates that a structure with elastic behavior keeps its linear-elastic behavior after the 
damage. However, nonlinear damage indicate that a structure with linear elastic behavior 
shows nonlinear behavior after the damage.  

Marvala and Hunt [6] presented a number of neural network techniques, which employs 
frequency response function and modal data simultaneously to identify faults in the building 
structures. They tested their proposed method on simulated data from a cantilevers beam. 
Worden [7] applied neural network to diagnose damage in a simple simulated lumped-
parameter mechanical system. It was shown that the system transmissibility provides a 
sensitive feature for the detection of small stiffness changes. Xia et al. [4] proposed a 
statistical method with combined uncertain frequency and mode shape data for structural 
damage identification. They updated a finite element model by comparing the measured 
vibration data before damage, or the same analytical finite element model of the undamaged 
structure with those measured after damage. Thus, the changes in vibration characteristics the 
finite element model becomes equal to the changes in the measured data as closely as 
possible. They applied the proposed method to a laboratory tested steel cantilever beam and 
frame structure. 

Hung and Kao [8] presented a two steps approach for damage detection in building 
structures. The system identification, as the first step, involves using neural system 
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identification networks (NSIN) to identify the undamaged and damaged states of a structural 
system. The partial derivatives of the outputs with respect to the inputs of the NSIN which 
identify the system in a certain undamaged or damaged state, have a negligible variation with 
different system errors. Then in the second step, structural damage detection involves using 
the neural damage detection network (NDDN) to detect the location and the extent of the 
structural damage. The input to the NDDN is taken as the aforementioned partial derivatives 
of NSIN, and the output of the NDDN identifies the damage level for each member in the 
structural system. 

Huang et al. [9] tried to identify the dynamic characteristics of a building to diagnose any 
earthquakes induced damages to the building, using a back-propagation neural network 
approach. The dynamic characteristics of the system were directly evaluated using the 
weighting matrices of the neural network trained by the observed acceleration responses and 
input base excitation. The level of the damage to the building under a large earthquake is 
assessed by comparing the modal properties and response parameters of the structural system 
under the target earthquake with those for small earthquakes without causing any damage to 
the buildings. They demonstrated the feasibility of the proposed approach by processing the 
dynamic response of a five-storey steel frame subjected to the Kobe earthquake with different 
intensities through shaking table tests. Tsai and Hsu [2] employed displacement time histories 
of the existing structures and back-propagation neural network technique to assess the severity 
and location of the defects for reinforced concrete structures. They used the results of finite-
element analysis of a simply-supported reinforced concrete beam with the assumed defects, 
for training the neural networks and also controlling their performance in identifying the 
assumed damages.  

Kirkegaard and Rytter [10] considered the potential of using back-propagation neural 
network for damage assessment of a free-free cracked straight steel beam based on vibration 
measurements. Zieminaski and Piatkowski [11] applied the neural networks for damage 
detection in rod structures. The identification method was based on the analysis of propagation 
of waves in solids. Zang and Imregun [12] used the measured frequency response functions 
(FRF) as input data to train artificial neural networks for structural damage detection. Harpula 
and Ziemianski [13] applied the neural networks for damage detection in bar structures based 
on changes in their dynamic characteristics.  

In this work, the  Park and Ang [1] damage index is considered to assess the seismic 
damage imposed to different reinforced concrete MRF structural models. Extensive nonlinear 
time history analyses performed using a number of earthquake records with different 
intensities. Then, the generated data base is used to train a number of artificial neural networks 
for prediction of the damage index. Also, numerical examples presented to demonstrate the 
performance of the proposed method. 

 
 

2. DAMAGE INDEX 
 

In order to quantitatively estimate the seismic damage of the structural buildings, an 
appropriate damage assessment method is needed. Among different existing damage indices 
that have been proposed by researchers, the Park and Ang [13] damage index is selected due 
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to its frequent use in the literature, for evaluating the seismic damage imparted to the concrete 
MRF structures. The Park and Ang damage index is defined as: 

 ∫+= dE
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δ
δ

..   (1) 

in which: 
PAID .. = The Park & Ang Damage Index 

mδ = Maximum deformation of structure during an earthquake 

uδ =Ultimate deformation capacity of building structure under monotonic loading 
β = Dimensionless strength reduction parameter 

∫ dE = Hysteretic energy absorbed by building structure during time story analysis 
 
Also, the following damage states are used; 

4.0..0 <≤ PAID       Representing repairable damage 
0.1..4.0 <≤ PAID    Representing damage beyond repair 

PAID ..0.1 ≤              Representing total collapse of structure 
 
As it was mentioned earlier, the IDARC program was used to perform the time history 

dynamic analyses. The program is able to calculate the Park & Ang damage index for different 
elements of the building structures. The damage index can be obtained for a structural element 
(local damage index), for different stories, and for the whole of the building (global damage 
index). In this research, the global damage indices are calculated for structural damage 
assessment purposes. In that regard, 24 planar reinforced concrete structures are designed 
according to the first edition of Iranian seismic design Code, Standard 2800 [14]. The natural 
periods of vibration of the first few modes of the structural models are shown in Table 1.  

The designed structural models were dynamically analyzed using six earthquake 
components recorded on stiff soil shown in Table 2, with different intensities. As the Table 1 
shows, the dominant frequencies of the earthquake records is an indication that they have been 
recorded on stiff soil (Soil type 2 based on Iranian seismic Code, Standard 2800). Figures 1 
and 2 show the acceleration time histories and the Fourier amplitudes of these records. The 
earthquake records have been scaled such that their PGA be equal to 10, 20, 30, 40, 50, and 
60 percent of the acceleration of gravity (g). The damage indices are calculated for all 
combination of structural models and earthquake records. The resulting data base is used for 
training a number of artificial neural networks. 

As an example, the damage indices computed for a 3 story-1 bay structural model (3s-1b) 
under different scaled Tabas earthquake record with PGA from 0.1g to 1.0g are shown in 
Figure 3. The obtained results indicate that for PGA’s up to 0.3g, no plastic hinges are formed 
in the structural models. However, due to the first term in the right hand side of Eq. (1), one 
still could have a nonezero value for the damage index. 
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Table 1. The Natural Periods of the First 5 Modes of  the Structural Models 

Period (sec) 
Number of mode Structural 

model 
1 2 3 4 5 

3s1b 0.66 0.17 0.07 * * 
3s2b 0.68 0.18 0.08 * * 
3s3b 0.69 0.19 0.09 * * 
4s1b 0.75 0.21 0.09 0.05 * 
4s2b 0.77 0.22 0.10 0.06 * 
4s3b 0.77 0.22 0.11 0.06 * 
5s1b 0.84 0.28 0.13 0.07 0.04 
5s2b 0.84 0.29 0.13 0.08 0.05 
5s3b 0.85 0.29 0.14 0.08 0.05 
6s1b 1.01 0.32 0.16 0.09 0.06 
6s2b 1.02 0.33 0.17 0.10 0.07 
6s3b 1.02 0.34 0.17 0.10 0.07 
7s1b 1.06 0.34 0.17 0.10 0.07 
7s2b 1.07 0.35 0.18 0.11 0.07 
7s3b 1.07 0.35 0.19 0.11 0.08 
8s1b 1.12 0.36 0.19 0.11 0.07 
8s2b 1.11 0.36 0.19 0.12 0.08 
8s3b 1.11 0.36 0.20 0.12 0.08 
9s1b 1.26 0.42 0.22 0.13 0.09 
9s2b 1.25 0.42 0.23 0.14 0.10 
9s3b 1.25 0.42 0.23 0.14 0.10 

10s1b 1.33 0.47 0.25 0.16 0.11 
10s2b 1.31 0.47 0.26 0.17 0.11 
10s3b 1.30 0.47 0.26 0.17 0.12 

 
Table 2.  Characteristics of the earthquake records used in this study 

Earthquake 
record Date PGA (g) Soil dominant 

frequency (Hz) 
Tabas 09/16/1978 0.93 2.42 
Manjil 06/20/1990 0.514 2.94 
Naqan 04/06/1977 0.714 3.293 
Bam 12/26/2003 0.793 5.54 

El Centro 05/18/1940 0.348 2.56 
Taft 07/21/1952 0.179 4.81 
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Figure 1. Earthquake records acceleration time histories 
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Figure 1.(Continued) Earthquake records acceleration time histories 
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 Tabas Fourier spectrum  

 
Manjil Fourier spectrum 

 
Naghan Fourier spectrum 

 
Bam Fourier spectrum 

Figure 2. Earthquake records Fourier amplitudes 
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El-Centro Fourier spectrum 

 
Taft Fourier spectrum 

Figure 2. (Continued) Earthquake Records Fourier Amplitudes 
 
      

3. ARTIFICIAL NEURAL NETWORKS 
 

A model of an artificial neuron is shown in Figure 4 [15]. A set of input signals (X1, X2,..., Xn) 
are applied to the neuron. Each signal is multiplied by a proportional weight before arriving at 
summation unit )(Σ . All weighted inputs are summed to make the output NET. Then the 
activation function is applied to the NET producing the OUT signal. In the current work, two 
mostly used activation functions, i.e., sigmoid and hyperbolic tangent shown in Figure 5, are 
employed which have been frequently used in artificial neural network (ANN) problems [15]. 
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Figure 3. Damage indices for a 3 story-1 bay model under Tabas earthquake record.   
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Figure 4. Mathematical model of an artificial neuron [15] 

 
 

(a) (b) 

Figure 5. Activation Functions (a) Sigmoid, (b) Hyperbolic tangent [15] 
 
Sigmoid function maps the value of NET within the (0,1) distance, while the Hyperbolic 

Tangent function maps the NET value on (-1,1) range. Also, in this work, the Back 
Propagation Network (BPN) is used which is the most applicable type of ANNs.  Due to back 
propagation of the output values in this type of network, the error will be minimized, since 
they are compared with the outputs of the previous stage.  

 
 

4. EVALUATION OF THE LEARNING AND PERFORMANCE OF THE 
NEURAL NETWORKS  

 
A well trained ANN can present acceptable response to the inputs either within or outside of 
the training set. The performance of the ANN can be evaluated using various mathematical 
methods. Two of the important parameters for measurement of learning and performance of 
the ANNs are the RMS and the correlation factor. 

RMS error is the square root of sum of squares of errors between actual and desired 
outputs of the network [15]. This parameter is considered as the target function in back 
propagation network and the weights of the network are considered as function variables. 
During training of a network, RMS reduction indicates the progress in network learning. As 
the RMS is reduced, the network learns better and gives more accurate answers to the existing 
inputs in training set. But this procedure does not indicate that the network can give accurate 
answers to the nonexistent inputs in the training set. In other word, it is possible that the value 
of RMS be very small, while the network does not provide acceptable answers to new inputs. 
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On the other hand, if RMS is reduced more than the required limit, it is possible that the 
network recites the existent data in training set and loses the ability of generalization and 
response to new inputs. Therefore, one cannot absolutely verify the appropriate learning and 
performance of a network according to low RSM value.  

On the other hand, the correlation factor that is defined as the harmonic variation of two 
variables[15], can be determined from the following equation: 

 

 [ ] 2122 )()(

))((
),(

∑ ∑
∑

−−

−−
=

yyxx

yyxx
yxr

ii

ii   (2) 

in which: 
x : is the average of x variables 
y : is the average of y variables 
 
The correlation factor could be positive or negative if the two variables change in 

agreement with each other in the same direction or opposite direction respectively. Finally the 
variables are called uncorrelated, if they do not change in agreement with each other. Value of 
r is between –1 and 1. If r=1, correlation is perfect and if r=-1, correlation is perfect and 
negative. In case of r=0, the variables are uncorrelated. Also in ANN, the correlation factor 
between actual and desired outputs from training and testing sets together can be used as a 
criterion for evaluating the performance and learning of the network. The closer the value of 
this factor gets to 1 for both data, existing in training and testing set, the better is the learning 
and performance of the network. It is notable that correlation factor between the actual and 
desired outputs from training set can never be used for evaluation of the performance of a 
network. Because, it is possible for the network to recite the existing data in the training set. 
Therefore, the correlation factor between the actual and the desired output could be close to 1, 
while the network may not be able to provide acceptable answers to new nonexistent inputs. 

For data classification and training of the ANNs in predicting the vulnerability of the 
structures, the data were divided into 3 groups for training and testing of the ANNs as below: 

• Group A: Network for assessment of damage in 3, 4, and 5 stories structural models. 
• Group B: Network for assessment of damage in 6 to 10 stories structural models. 
• Group C: Network for assessment of damage in 3 to 10 stories structural models. 

In order to train the AANs, the “Neural Works” program has been employed [16]. In all 
the networks, training set includes the following seven parameters: the ratio of the number of 
stories to number of bays for each structural model, the period of the first vibration mode of 
the structural models, peak ground acceleration (PGA), earthquake dominant frequency, 
scaled earthquake acceleration, maximum displacement of the top floor of the structural 
models, and the computed damage index. The testing set includes all the above parameters 
except the damage index. 

In each group (i.e. A, B and C), the test set data were selected randomly from the database 
generated by performing the dynamic time history analyses for the structural models of that 
group. In order to train the networks, back propagation algorithm was used. Architecture of 
the networks consists of one input layer, one (or two) hidden layer(s), and one output layer. 
Both hyperbolic tangent and sigmoid functions were employed in training the networks and 
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their performances were compared. The number of neurons in hidden layer were increased to 
achieve the best prediction possible. The results of training of group A networks have been 
briefly shown in Table 3. As it is seen in that Table, network AT-12 with 12 neurons in its first 
hidden layer has the best prediction. 

 
Table 3. Training and test results of group A network 

Number of neurons in layers Number of 
pairs Act. 

func. RMS R2 
Learning 

rule 
Output 2nd 

hidden 
1st 

hidden Input Test Train 

Network 
name 

tanh 0.0227 0.9949 Delta 1 0 8 6 30 300 AT-8 
tanh 0.0214 0.9956 Delta 1 0 9 6 30 300 AT-9 
tanh 0.0192 0.9971 Delta 1 0 12 6 30 300 AT-12 
tanh 0.0205 0.9961 Delta 1 0 14 6 30 300 AT-14 
tanh 0.0195 0.9971 Delta 1 2 12 6 30 300 AT-12-2 
tanh 0.0192 0.997 Delta 1 4 12 6 30 300 AT-12-4 
tanh 0.0195 0.9969 Delta 1 6 12 6 30 300 AT-12-6 
tanh 0.0193 0.9968 Delta 1 8 12 6 30 300 AT-12-8 

S 0.0239 0.9944 Delta 1 0 8 6 30 300 AS-8 
S 0.0224 0.9953 Delta 1 0 9 6 30 300 AS-9 
S 0.0222 0.9954 Delta 1 0 12 6 30 300 AS-12 
S 0.0226 0.995 Delta 1 0 14 6 30 300 AS-14 
S 0.0297 0.9921 Delta 1 2 12 6 30 300 AS-12-2 
S 0.0293 0.9923 Delta 1 4 12 6 30 300 AS-12-4 
S 0.0291 0.9925 Delta 1 6 12 6 30 300 AS-12-6 
S 0.0291 0.9925 Delta 1 8 12 6 30 300 AS-12-8 

 
According to Table 3, no substantial improvement was obtained using two hidden layers in 

training of the networks. In fact, that has increased the time needed for training of the network. 
The same results obtained for increasing the number of neurons in the second hidden layer. 

The results of training group B networks are shown in Table 4. In this group, network BT-
12 with 12 neurons in first hidden layer has the best prediction. In this group also, no 
substantial improvement was obtained in using two hidden layers except increasing the 
needed time for the training operation. The results of training group C networks are shown in 
Table 5. According to this Table, the network CT-14 with 14 neurons in first hidden layer has 
the best prediction. Similarly in this group no considerable improvement was obtained using 
two hidden layers, while the training time was increased.  

Predicted damage indices by the networks AT-12, BT-12, and CT-14 are plotted versus 
those calculated by IDARC program in Figures 4, 5, and 6 respectively. These figures show 
that the trained neural networks can properly predict the level of damage in structural models 
under earthquake excitation. 
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Table 4. Training and test results of group B network 

Number of neurons in layers Number of 
pairs Act. 

func. RMS R2 Learning 
rule 

Output 2nd 
hidden 

1st 
hidden Input Test Train 

Network 
name 

tanh 0.0297 0.9897 Delta 1 0 8 6 40 500 BT-8 
tanh 0.0289 0.9904 Delta 1 0 9 6 40 500 BT-9 
tanh 0.0177 0.9969 Delta 1 0 12 6 40 500 BT-12 
tanh 0.0243 0.9927 Delta 1 0 14 6 40 500 BT-14 
tanh 0.02 0.9965 Delta 1 2 12 6 40 500 BT-12-2 
tanh 0.0194 0.9966 Delta 1 4 12 6 40 500 BT-12-4 
tanh 0.0199 0.9964 Delta 1 6 12 6 40 500 BT-12-6 
tanh 0.0201 0.9961 Delta 1 8 12 6 40 500 BT-12-8 

S 0.0306 0.989 Delta 1 0 8 6 40 500 BS-8 
S 0.0299 0.99 Delta 1 0 9 6 40 500 BS-9 
S 0.0268 0.9918 Delta 1 0 12 6 40 500 BS-12 
S 0.0302 0.9893 Delta 1 0 14 6 40 500 BS-14 
S 0.0323 0.9876 Delta 1 2 12 6 40 500 BS-12-2 
S 0.0327 0.9868 Delta 1 4 12 6 40 500 BS-12-4 
S 0.0323 0.987 Delta 1 6 12 6 40 500 BS-12-6 
S 0.0324 0.987 Delta 1 8 12 6 40 500 BS-12-8 
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Figure 4. AT-12 network prediction vs. IDARC answers 
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Figure 5. BT-12 network prediction vs. IDARC answers 

 
Table 5. Training and test results of group C network 

Number of neurons in layers Number of 
pairs Act. 

func. RMS R2 Learning 
rule 

Output 2nd 
hidden 

1st 
hidden Input Test Train 

Network 
name 

tanh 0.0232 0.9901 Delta 1 0 6 6 40 830 CT-6 
tanh 0.0209 0.9917 Delta 1 0 8 6 40 830 CT-8 
tanh 0.0196 0.9928 Delta 1 0 10 6 40 830 CT-10 
tanh 0.0191 0.9931 Delta 1 0 12 6 40 830 CT-12 
tanh 0.0094 0.9984 Delta 1 2 14 6 40 830 CT-14 
tanh 0.0165 0.9949 Delta 1 4 16 6 40 830 CT-16 
tanh 0.0181 0.9937 Delta 1 6 18 6 40 830 CT-18 
tanh 0.0191 0.9931 Delta 1 8 20 6 40 830 CT-20 
tanh 0.0187 0.9933 Delta 1 0 22 6 40 830 CT-22 
tanh 0.019 0.993 Delta 1 0 23 6 40 830 CT-23 
tanh 0.0194 0.9928 Delta 1 0 24 6 40 830 CT-24 
tanh 0.0163 0.995 Delta 1 2 14 6 40 830 CT-14-2 
tanh 0.0158 0.9955 Delta 1 4 14 6 40 830 CT-14-4 
tanh 0.016 0.9953 Delta 1 6 14 6 40 830 CT-14-6 
tanh 0.0161 0.9952 Delta 1 8 14 6 40 830 CT-14-8 

S 0.0256 0.9886 Delta 1 0 6 6 40 830 CS-6 
S 0.025 0.9893 Delta 1 0 8 6 40 830 CS-8 
S 0.0248 0.9894 Delta 1 0 10 6 40 830 CS-10 
S 0.0245 0.9899 Delta 1 0 12 6 40 830 CS-12 
S 0.0112 0.9977 Delta 1 2 14 6 40 830 CS-14 
S 0.0192 0.9932 Delta 1 4 16 6 40 830 CS-16 
S 0.0212 0.9919 Delta 1 6 18 6 40 830 CS-18 
S 0.0218 0.9918 Delta 1 8 20 6 40 830 CS-20 
S 0.0215 0.9919 Delta 1 0 22 6 40 830 CS-22 
S 0.0215 0.9921 Delta 1 0 23 6 40 830 CS-23 
S 0.0208 0.9926 Delta 1 0 24 6 40 830 CS-24  
S 0.0304 0.9841 Delta 1 2 14 6 40 830 CS-14-2 
S 0.0313 0.9831 Delta 1 4 14 6 40 830 CS-14-4 
S 0.031 0.9937 Delta 1 6 14 6 40 830 CS-14-6 
S 0.0309 0.9936 Delta 1 8 14 6 40 830 CS-14-8 
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Figure 6. CT-14 network prediction vs. IDARC answers 

 
 

5. CONCLUDING REMARKS 
 

The following conclusions can be made:   
1. It is possible to estimate the vulnerability of concrete MRF building structures using 

Artificial Neural Networks. 
2. Although for earthquake records with small peak ground accelerations (PGA), the 

structural models remain within the elastic range without dissipating any hysteretic 
energy, but the computed damage index still becomes non-zero due to resulting elastic 
deformation.   

3. Application of one hidden layer in training the networks for estimation of seismic 
vulnerability of structures is sufficient. 

4. Using hyperbolic tangent activation function, slightly better prediction of damage index 
was obtained than sigmoid function. 

5. No substantial improvement was obtained using two hidden layers in training the 
networks with larger training time. 

6. No considerable improvement was obtained by increasing the neurons in the second 
hidden layer of the networks. 

7. Artificial neural networks could provide acceptable damage assessment of the concrete MRF 
building models caused by the earthquake records that were not included in the training set.  
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