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ABSTRACT 
 

Meta-heuristics have received increasing attention in recent years. The present article 

introduces a novel method in such a class that distinguishes a number of artificial search 

agents called players within two teams. At each iteration, the active player concerns some 

other players in both teams to construct its special movements and to get more score. At the 

end of some iterations (like quarters of a sports game) the teams switch their places for fair 

play. The algorithm is developed to solve a general purpose optimization problem; however, 

in this article its application is illustrated on structural sizing design. Switching Teams 

Algorithm is presented as a parameter-less population-based algorithm utilizing just two 

control parameters. The proposed method can recover diversity in a novel manner compared 

to other meta-heuristics in order to capture global optima. 
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structural design. 

 
Received: 10 January 2020; Accepted: 15 May 2020 
 

 

1. INTRODUCTION 
 

Many engineering fields deal with complexity in their optimization problems. Structural 

design is one of the most famous fields among them that have received considerable 

research attention from early 19’s century up to now. It is usually characterized by non-

differentiable functions and narrow non-convex feasible regions with respect to the entire 

design space.  

Two main categories of solution means are most popular for optimization. Mathematical 

Programming constitutes the first category; best suited for analytical differentiable functions 
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and convex programming problems. However, the second including meta-heuristics, mostly 

works with sampling of the function itself without the need to evaluate any its gradients. 

Such a feature have made it interesting for several practical fields; including civil 

engineering problems. Another reason for popularity of meta-heuristics application in 

structural engineering, is complexity of the corresponding continuous and discrete problems 

that brings about the need for efficient methods to reveal even a near-optimal solution in 

practical time. That is why several research works have already been addressed in this field. 

Some of the applied methods can be referred as Evolutionary Algorithms [1–3], Simulated 

Annealing[4,5], Ant Colony and swarm intelligence [6–8], Harmony Search [9–12], 

Charged System Search [13–15], Colliding Bodies Optimization [16], Imperialist 

Competition [17–19], Teaching–Learning-Based Optimization [20,21], Water Evaporation 

Optimization [22], Thermal Exchange Optimization [23], Grey Wolf Optimizer [24], 

Interior Search Algorithm [25], Cuckoo Search [26], Sine-Cosine Algorithm [27,28] and 

Vibrating Particles Search [29].  

An important issue for meta-heuristic algorithms is the way each applies to provide 

intensification and diversification [30]. In some vast design spaces, it is desired to have 

powerful intensification toward the solution to provide computational efficiency in finding a 

practical solution. However, in some others overpassing local optima toward global 

optimum may have considerable merit in cost minimization. It is ideal to have an algorithm 

that can robustly balance these features when working with different design spaces. The 

matter is sometimes implemented via problem-specific parameter tuning. However, a 

practical strategy is to employ more robust operators in the algorithm, instead of dealing 

with extra computational effort in challenging task of parameter tuning.  

The present work introduces a novel meta-heuristic algorithm regarding the 

aforementioned goals. It simulates some actions of sports game players in the opposite 

teams that alternatively switch their position to provide sufficient diversity. The method is 

called Switching Teams Algorithm. STA is proposed here as a parameter-less population-

based algorithm working with no more than population size and number of function 

evaluations. It is validated here-in-after by solving a number of structural sizing benchmarks 

that include both continuous and discrete design spaces in a variety of small to large-scale 

examples. 

 

 

2. SWITCHING TEAMS ALGORITHM: CONCEPTS AND STEPS 
 

A new meta-heuristic algorithm is introduced that is inspired by some actions in sports’ 

games between two teams in the opposite sides. In view of a player, the others are either in 

its team or in the opposite. It will of-course affect the forthcoming play-strategy. When 

deciding to move, a player may concentrate on one of the local neighbor’s; however, the 

overall movement of either team is also observed as each team wears its special color. A 

more experienced player; namely the captain also takes place in the middle of the team so 

that he can better communicate with its-team players. During the game, each player can run 

back if the new position is worse than the previous. A player has also an insight on the way 

that its captain instructs. The teams should switch their ground at the end of each round of 
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the game. It will help diversifying priority of the environmental conditions between both; 

rather than limiting them to one. For example, the direction of sun shine affects the players’ 

visibility. It will then exerts some type of priority on the ground position for a team when 

selecting the side. As the game time is consumed, the sun gradually changes position over 

the horizon affecting such priority.  

The present optimization algorithm is designated to take merit of such movement 

strategies in the artificial search space. Each player simulates an agent (a design vector) that 

seeks for the best opportunity (merit) by running from one position to another. The entire 

population of search agents is thus divided into two teams with equal number of players. 

Effect of the environment in selecting the side, is modeled via sorting the population based 

on a merit function evaluated over the corresponding design vectors.  

The above concepts and more are simulated hereinafter to develop a novel optimization 

method called Switching-Teams Algorithm, STA via the following steps.  

1. STA is a population-based method, so the first step is initiating the players as: 

 

( )LB UB LB

iX X rand X X     (1) 

 

The vector Xi is the ith player randomly positioned in the range [XLB, XUB] indicating 

lower and upper bounds on design vector, respectively. The function rand generates a 

random vector with positive components less than unity and   stands for the element-wise 

multiplication.  

2. Evaluate the fitness (merit) function for all Np players in the population of two teams.  

3. Sort the players due to their fitness values. Determine the ball position; XB as the best 

experience of the entire population. 

4. Switching the sides: Sort the entire population due to fitness scores. Consider two teams; 

one of them named as the friend team and the other as the enemy. By a prescribed 

switching probability  assign either the fitter side (half population) to the friend team and 

the other to the enemy or vice versa. Median player of each team is called its captain. 

5. For each player in the friend team, do 

a. Locally directed run: The player pays attention on a randomly chosen player in its 

team (its neighbor) and determine a decision factor d based on priority of such a 

neighbor position over the current. If the neighbor is fitter than the player, set d to 1; 

otherwise set it to -1. The run vector is then generated as: 

 
I .( )i j iV d X X   (2) 

 

b. Globally directed run: The player takes an insight on the overal movement of the 

teams. If 1d  , set a run vector Vi
II as the direction in which mean of the 1st team 

moves toward the best position XB; otherwise set Vi
II in direction from mean of the 2nd 

team toward XB. 

c. Move the player to the following new candidate position and evaluate its fitness. 

 
I II

i i i iX X rand V rand V      (3) 
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Figure 1. Flowchart of the proposed STA 

 

d. Running back: Move the current player back to its previous postion if it is fitter than 

the new position 

e. Players’ challenge: when both a random player in the enemy team, denoted by X’k, 

and the current player think to posess the ball; construct the following move direction: 

 
III '

i B k iV X X X    (4) 

 

f. Captains’ challenge: Denote captain of the friend team as Xc and the other as X’c and 

construct their challenge direction as: 

 
IV '

i C CV X X   (5) 

 

g. Make another run by the current player by: 

 
III IV

i i i iX X rand V rand V      (6) 

 

h. Running back: Move the current player back to its previous postion if it is fitter than 

the new position. 

i. Diverse playing without the ball: By equal chance the current player selects one of the 

two targets to run toward: either mirror of its position in the ground or position of a 

randomly chosen player in the enemy team, X’k:  
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'

k

i LB UB

i

X
X rand

X X X


 

 
 (7) 

 

j. Running back: Move the current player back to its previous postion if it is fitter than 

the new position. 

6. Return to step 3 and iterate the loop until a prescribed number of function evaluations; 

NFEmax, is completed. 

Flowchart of the proposed algorithm is given in Fig. 1. Fixing the switching probability 

to 50%, STA works with the fewest control parameters; i.e. with Np and NFEmax.  

 

 

3. NUMERICAL SIMULATION 
 

Performance of STA is evaluated here via comparison with some other literature works on a 

number of pin-jointed structures. The sizing probelm is formulated to find the least structural 

weight provided that stress and/or displacement constraints are satisfied. Applying an 

external penalty approach, the problem is formulated to maximize the fitness function as: 

 

( ) (1 ) i i

i

Max Fitness X Cost Q l A        (8) 

 

in which, il  and iA stand for the member length and cross-section area, respectively. The 

material density is denoted by  while  indicates the penalty factor; taken 10 in this study. 

Q takes into account the overall violation of constraints by:  

 

max{max(0, ( ))}k
k

Q g X  (9) 

 

where any kth constraint in the standard form is given by ( ) 0kg X  . Dimension of the 

vector X is the same as the number of member groups; with a section index or area in each 

design variable jx .  

In order to perform fair comparison on the results in each problem, the following 

Variation Index; is determined and computed for each method: 

 

* * /1000VI COV NR NFE  (10) 

 

Such a VI takes into account not only Coefficient Of Variation (COV; i.e. standard 

deviation divided by the mean) but also number of trial runs (NR) as well as number of 

function evaluations (NFE). Employing 40 total players in each example the number of 

iterations is given in its convergence curve; large enough to reach the corresponding NFEmax. 
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Table 1: Member groups and corresponding allowable stresses for 25-bar truss 

Group 

Variable  

Member 

Areas 

Compressive 

Stress limit  

ksi (MPa) 

Tensile  

Stress limit 

ksi (MPa) 

X1 A1 35.092 (241.96) 40.0 (275.80) 

X2 A2~A5 11.590 (79.913) 40.0 (275.80) 

X3 A6~A9 17.305 (119.31) 40.0 (275.80) 

X4 A10~A11 35.092 (241.96) 40.0 (275.80) 

X5 A12~A13 35.092 (241.96) 40.0 (275.80) 

X6 A14~A17 6.759 (46.603) 40.0 (275.80) 

X7 A18~A21 6.959 (47.982) 40.0 (275.80) 

X8 A22~A25 11.082 (76.410) 40.0 (275.80) 

 

 
Figure 2. 25-bar space truss [22] 

 

3.1 25-bar space truss  

As a widely used benchmark to validate optimization algorithms, 25-bar power-transmission 

truss of Fig. 2 is treated [1]. The truss members are linked to 8 symmetric groups as given in 

Table 1. Material density is 0.1lb/in3
 (2767.99 kg/m3) while it has elasticity modulus of 

10000ksi (68.95GPa). Similar limit of 0.35in is imposed on nodal displacements in each 

orthogonal direction.  
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For the first experiment, section area of each member group is to be assigned within a 

continuous range from 0.01in2 to 3.40in2. Other behavior constraints include stress limits on 

tension members as 40.0ksi (275.80MPa) and those taking into account buckling effect on 

compression members are given in Table 1. In this experiment, the structure is supposed to 

distinctly resist two load cases of Table 2.  

 

Table 2: Loading (kips) on 25-bar truss with continuous variables 

 Case 1    Case 2   

Node Px Py Pz  Px Py Pz 

1 0.0 20.0 -5.0  1.0 10.0 -5.0 

2 0.0 -20.0 -5.0  0.0 10.0 -5.0 

3 0.0 0.0 0.0  0.5 0 0 

6 0.0 0.0 0.0  0.5 0 0 

*1kips=4.45kN  

 

Table 3: Performance comparison in sizing of 25-bar spatial truss with continuous variables 

Variable PSO[31] MSPSO[31] HPSSO[32] IRO[33] WEO[22] ACO[34] STA 

X1 (in
2) 0.0100 0.0100 0.0100 0.0112 0.0100 0.0100 0.0102 

X2 1.9503 1.9848 1.9907 1.9766 1.9814 2.0000 1.9866 

X3 3.0408 2.9956 2.9881 3.0099 3.0023 2.9660 2.9943 

X4 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

X5 0.0100 0.0100 0.0100 0.0100 0.0100 0.0120 0.0100 

X6 0.6929 0.6852 0.6824 0.6842 0.6827 0.6890 0.6835 

X7 1.6866 1.6778 1.6764 1.6783 1.6778 1.6790 1.6770 

X8 2.6362 2.6599 2.6656 2.6571 2.6612 2.6680 2.6626 

Best (lb) 545.22 545.16 545.16 545.19 545.16 545.53 545.16 

Mean (lb) 549.96 546.03 545.56 545.35 545.23 546.34 552.43 

NFE 

(NFE_best) 

25000 

(18400) 

25000 

(10800) 

18000 

(13326) 

15000 

(12200) 

20000 

(19750) 

16500 

(4700) 

12000 

(11985) 

NR 50 50 50 50 10 100 10 

VI 22.52 1.83 0.71 N/A 0.03 2.84 3.10 

VI: Variation Index, N/A: Not Available  

 

According to Table 3, the proposed method has obtained the best result among the others 

regarding that no constraint violation has occurred. That is structural weight as small as 

545.164lb within 11985 structural analyses. The required computational cost is also 

competitive with the others. However, applying 10 independent runs has led to greater mean 

result. The resulted VI of STA is very smaller than PSO but competitive to the others; where 

WEO has the first rank in this regard. Here, Fig. 3 reveals that STA has preserved a level of 

diversity so that during further iterations the mean result does not coincide with the best by a 

relatively stable margin.  

According to Fig. 4, the displacement constraint is activated in both cases where stress 

ratio in case 1 has reached its limit. The matter declares success of the proposed algorithm in 

revealing constrained optimum. 
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Figure 3. Convergence history of 25-bar truss design with continuous variables 

 

For the second experiment, section areas are selected from a discrete list of 34 values 

from 0.1 to 3.40in2 with interval of 0.1in2. In this case, allowable compressive stress is 

similar to tensile stress; i.e. it is set to -40.0ksi and the structure undergoes single loading 

case given by Table 4.  

Table 5 reports the results comparison of this example when dealing with discrete 

variables. In this case, STA has revealed the best feasible design with the weight of 

484.328lb by less than 2000 structural analyses. It is better than the second rank belonging 

to ACO[34] that required 5200 analyses to achieve a truss weight of 484.85lb. In such a 

discrete problem, VI of STA has improved to 0.49 with respect to continuous design 

experiment. It is much better than VI of 7.46 by ACO. Convergence curves in this 

experiment on discrete sizing design of 25-bar truss are depicted in Fig. 5. A diversity 

margin is again oberved between the best and mean result of STA. It is evident from Fig. 6 

that only displacement constraint is activated under such a single load case. 

 
Table 4: Loading (kips) on 25-bar truss with discrete variables 

 Case 1   

Node  Px  Py  Pz  

1 0.0 -10.0 -10.0 

2 1.0 -10.0 -10.0 

3 0.6 0.0 0.0 

6 0.5 0.0 0.0 
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(a)                                                            (b) 

 
(c) 

Figure 4. Structural responses of 25-bar truss: a) case 1, b)case2 , c)both load cases 

 

 
Figure 5. Convergence history of 25-bar truss design with discrete variables 
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Table 5: Performance comparison in sizing of 25-bar spatial truss with discrete variables 

Variable GA [1] GA [35] IRO [33] BB-BC [36] ACO [34] STA 

X1 (in
2) 0.1 0.1 0.1 0.1 0.1 0.1 

X2 1.8 0.5 0.5 0.3 0.3 0.4 

X3 2.3 3.4 3.4 3.4 3.4 3.4 

X4 0.2 0.1 0.1 0.1 0.1 0.1 

X5 0.1 1.9 1.9 2.1 2.1 2.2 

X6 0.8 0.9 0.9 1.0 1.0 1.0 

X7 1.8 0.5 0.5 0.5 0.5 0.4 

X8 3.0 3.4 3.4 3.4 3.4 3.4 

Best (lb) 546.01 485.05 485.05 484.85 484.85 484.328 

Mean (lb) N/A N/A 484.90 485.10 486.46 493.656 

NFE(best) (800) 15000 (925) (9000) 7700(5200) 2000(1677) 

NR N/A N/A 50 N/A 100 10 

VI N/A N/A N/A N/A 7.46 0.49 

 

 
Figure 6. Structural responses of optimal 25-bar truss with discrete variables 

 

3.2 47-bar power transmission 

As a practical application, member areas of a power transmission truss (Fig. 7) is optimized 

by the proposed method. It was first considered for simultaneously size and geometry 

optimization by Flix and Vanderplaats [37], then addressed by others [38,39] under three 

distinct loading cases: 

1. 6kips acting in positive X-direction and 14kips in negative Y-direction at nodes 17 and 22 

2. The aforementioned loads exerted only on node 17 

3. The aforementioned loads exerted only on node 22 

The first case introduces, condition of two power lines attached to the tower at an angle. 

when each of these lines snaps the second and third loading cases occur. Lee et al. [39] also 

presented a solution of this problem for pure sizing under the third load case; which the 

same is concerned in the present study. Forty-seven members of the truss are linked to 27 

sizing groups as given in Table 6. The section area of each group constitute a discrete design 

variable to be chosen from available list of Table 7.  
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Figure 7. 47-bar power transmission tower [39] 

 

 
Figure 8. Convergence history of 47-bar truss design 
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Table 6: Member groups for sizing design of 47-bar tower 

Group ID Member Areas Group ID Member Areas Group ID Member Areas 

1 A1,A3 10 A17,A18 19 A33 

2 A2,A4 11 A19,A20 20 A34,A35 

3 A5,A6 12 A21,A22 21 A36,A37 

4 A7 13 A23,A24 22 A38 

5 A8,A9 14 A25,A26 23 A39,A40 

6 A10 15 A27 24 A41,A42 

7 A11,A12 16 A28 25 A43 

8 A13,A14 17 A29,A30 26 A44,A45 

9 A15,A16 18 A31,A32 27 A46,A47 

 
Table 7: Discrete list of available section areas (in2) for sizing design of 47-bar tower 

ID Area ID Area ID Area ID Area 

1 0.111 17 1.563 33 3.840 49 11.500 

2 0.141 18 1.620 34 3.870 50 13.500 

3 0.196 19 1.800 35 3.880 51 13.900 

4 0.250 20 1.990 36 4.180 52 14.200 

5 0.307 21 2.130 37 4.220 53 15.500 

6 0.391 22 2.380 38 4.490 54 16.000 

7 0.442 23 2.620 39 4.590 55 16.900 

8 0.563 24 2.630 40 4.800 56 18.800 

9 0.602 25 2.880 41 4.970 57 19.900 

10 0.766 26 2.930 42 5.120 58 22.000 

11 0.785 27 3.090 43 5.740 59 22.900 

12 0.994 28 3.130 44 7.220 60 24.500 

13 1.000 29 3.380 45 7.970 61 26.500 

14 1.228 30 3.470 46 8.530 62 28.000 

15 1.266 31 3.550 47 9.300 63 30.000 

16 1.457 32 3.630 48 10.850 64 33.500 

 

The tower is made symmetric about Y-axis from steel with density of 0.3lb/in3 and 

elasticity modulus of 30000ksi. Allowable stress is taken 20ksi for tensile members; 

however, its absolute is given by the following equation for compressive members taking 

into account the buckling stress: 

 

2

15

  min
, 3.96

allowable

compression

ksi

EA

l

 





 




 (11) 
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Table 8: Comparison of the results (section ID’s) for 47-bar dome design 

Var. HS[39] STA Var. HS[39] STA Var. HS[39] STA 

X1 33 25 X10 21 18 X19 6 24 

X2 29 23 X11 1 1 X20 27 28 

X3 10 18 X12 1 21 X21 16 14 

X4 2 10 X13 19 19 X22 3 1 

X5 11 9 X14 19 19 X23 33 27 

X6 20 17 X15 16 15 X24 17 14 

X7 21 21 X16 7 1 X25 3 1 

X8 14 12 X17 32 25 X26 39 30 

X9 17 15 X18 16 14 X27 16 14 

Best (lb)       2396.8 2172.49 

Mean (lb)       N/A 2372.75 

NFE(best)       (45557) 6000(5991) 

NR       N/A 10 

VI       N/A 3.98 

 

Convergence curve of Fig. 8 reveals great drop of the cost function (structural weight) 

and its continued refinement in iterations of the search by STA. The curve is demonstrated 

in logarithmic scale to better declare such an improvement and also the difference between 

the best and mean results during optimization.  

Table 8 reports superior performance of STA over HS in such a pure sizing discrete 

design. In this example, STA has captured best weight of 2172.49lb by just 6000 structural 

analyses. It is 10% lighter than the result of the other literature work that has achieved 2396.8lb 

within 7.6 times more computational effort than STA. Fig. 9 declares how the behavior 

constraint in the optimal design of 47-bar tower, is activated by STA.  

 

 
Figure 9. Structural responses of optimal 47-bar truss design 
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3.3 120-bar dome  

As a widely used continuous structural problem, weight minimization of the spatial dome 

(Fig. 10) is concerned [9,40]. Continuous design variables include section areas for seven 

element groups within the range 0.775 to 20.000 in2. The employed material has density of 

0.288lb/in3, elasticity modulus of 30450ksi and yield stress of 58ksi.  

Structural loading consists of 13.489kips at node 1, 6.744 kips at nodes 2 to 13 and 

2.248kips at the other free nodes. Pipe sections are utilized so that gyration radii can be 

extracted from area by
0.67770.4993r A . Allowable stress design provisions of the practice 

code[41,42] is applied as: 
 

  0.6allowable

tension yF   (12) 

2

2

32

2 3

2

12
for 1

23
 

5 3
(1 ) ( ) for 1

2 3 8 8

2

callowable

compression

y

c c c c

c
y

E

C

F
C C C C

EC
F

 




  







 
    





 
(13) 

 

where λ denotes slenderness ratio of the corresponding member. It is calculated using 

effective length divided by section gyration radius. As the structure include truss members, 

their buckling length factor is unity.  

This example has already been addressed by several investigators when its original case 

is treated here. Some of their related works are reported in Table 9. STA has captured a 

feasible design weighing 19473.27lb; that is 0.1% heavier than the best result by CBO 

among the others. However, such a result of STA has been obtained via 7643 analyses much 

lower than 14960 structural analyses by CBO. As can be realized in Fig. 11, search 

improvement of STA occurs after early cost-drop in initial iterations. According to Fig. 12, 

STA has also been successful in activating the stress constraint in optimal design.  
 

Table 9: Comparison of the results for 120-bar dome design  

 HS[9] HPSACO[11] RO[43] CBO[40] ICLBO[18] STA 

X1 (in
2) 3.295 3.311 3.128 3.123 3.124 3.1220 

X2 2.396 3.438 3.357 3.354 3.454 3.3710 

X3 3.874 4.147 3.874 4.112 4.113 4.1143 

X4 2.571 2.831 4.114 2.782 2.786 2.7819 

X5 1.150 0.775 0.775 0.775 0.775 0.7865 

X6 3.331 3.474 3.302 3.300 3.573 3.3004 

X7 2.784 2.551 2.453 2.446 2.446 2.4456 

Best (lb) 19707.8 19491.3 19476.2 19454.7 19680.6 19473.27 

Mean (lb) N/A N/A N/A 19466.0 23661.0 20064.89 

NFE(best) 50000 10000 (19950) (14960) 30000 8000 

NR N/A 50 30 20 10 10 

VI N/A N/A N/A N/A 38.0 3.3 
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Figure 10. 120-bar dome truss [22] 

 

 
Figure 11. Convergence history of 120-bar dome 
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Figure 12. Structural responses of optimal 120-bar dome design 

 

 

 
(a) (b) 

Figure 13. 582-bar tower: (a) Top view, (b)Side view [44] 
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3.4 582-bar tower  

Performance of the proposed method in optimal design of a large scale benchmark is 

evaluated in this example. The 80m tower has 582 pin-jointed elements linked to 32 

symmetric groups as given in literature. Geometry and topology of the 582-bar tower truss is 

demonstrated in Fig. 13. Elasticity modulus is 204MPa while the yield stress is taken 

253.1MPa. The tower resists a single load case including lateral loads of 5kN in X and Y 

directions while each node undergoes a downward load of 30kN.  

Nodal displacements are confined to 0.08m in each direction. Members are subjected to 

allowable stress design regulations of the practice code with Equations (12) and (13). 

Additional limits of 200 and 300 are exerted on the slenderness ratio in compressive and 

tensile elements, respectively. 

The problem is treated with integer section indices as discrete design variables. Some 

investigators applied a set of 137 economical standard steel W-shape profiles with section 

areas between 6.16in2 (39.74cm2) and 215.0in2 (1387.09cm2) [45]. However, in the present 

work a list of 140 W-Sections are utilized as given by Sonmez [44]. Consequently, the 

search space will be of the order 1068 that is considerably large. The objective (cost) function 

is taken total volume over the structural members.  

 

 
Figure 14. Convergence history of 582-bar tower 

 

The proposed STA has captured the best design with a volume of 21.13m3; superior to 

other literature works in Table 10. Such a result has been achieved via just 5985 function 

evaluations by STA, while the best result among the others; i.e. CBO required 6400 

structural analyses to obtain a greater volume of 21.838m3.  
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Table 10: Comparison of the results for 582-bar tower design  

Group PSO[45] BB-BC[46] DHPSACO[8] CBO[47] STA 

1 W8x21 W8x24 W8x24 W8x21 W8x21 

2 W12x79 W24x68 W12x72 W12x79 W10x68 

3 W8x24 W8x28 W8x28 W8x28 W8x21 

4 W10x60 W18x60 W12x58 W10x60 W10x77 

5 W8x24 W8x24 W8x24 W8x24 W8x21 

6 W8x21 W8x24 W8x24 W8x21 W8x21 

7 W8x48 W21x48 W10x49 W10x68 W10x60 

8 W8x24 W8x24 W8x24 W8x24 W8x21 

9 W8x21 W10x26 W8x24 W8x21 W8x21 

10 W10x45 W14x38 W12x40 W14x48 W14x48 

11 W8x24 W12x30 W12x30 W12x26 W8x21 

12 W10x68 W12x72 W12x72 W21x62 W14x74 

13 W14x74 W21x73 W18x76 W18x76 W16x67 

14 W8x48 W14x53 W10x49 W12x53 W12x65 

15 W18x76 W18x86 W14x82 W14x61 W12x65 

16 W8x31 W8x31 W8x31 W8x40 W8x21 

17 W8x21 W18x60 W14x61 W10x54 W12x65 

18 W16x67 W8x24 W8x24 W12x26 W8x21 

19 W8x24 W16x36 W8x21 W8x21 W8x21 

20 W8x21 W10x39 W12x40 W14x43 W10x68 

21 W8x40 W8x24 W8x24 W8x24 W8x21 

22 W8x24 W8x24 W14x22 W8x21 W8x21 

23 W8x21 W8x31 W8x31 W10x22 W10x22 

24 W10x22 W8x28 W8x28 W8x24 W8x21 

25 W8x24 W8x21 W8x21 W8x21 W12x40 

26 W8x21 W8x24 W8x21 W8x21 W6x25 

27 W8x21 W8x28 W8x24 W8x24 W10x22 

28 W8x24 W14x22 W8x28 W8x21 W8x21 

29 W8x21 W8x24 W16x36 W8x21 W8x28 

30 W8x21 W8x24 W8x24 W6x25 W10x22 

31 W8x24 W14x22 W8x21 W10x33 W16x36 

32 W8x24 W8x24 W8x24 W8x28 W12x53 

Best (m3) 22.396 22.371 22.061 21.838 21.130 

Mean (m3) N/A N/A 23.410 N/A 23.738 

NFE(best) 50000 12500 (8500) (6400) 6000(5985) 

NR N/A N/A 20 N/A 10 

VI N/A N/A 12.1 N/A 6.9 

 

The study also reveals comparable VI of STA with the others, in this example. For such a 

problem with high cardinality of search space, convergence history of STA are given in Fig. 

14; where a decreasing trend of mean volume (cost function) is observed with a difference 

from the best result. At the optimal design by STA, the maximum stress ratio is lower than 

80%. Meanwhile activation of the displacement can be observed in Fig. 15. 
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Figure 15. Structural responses of optimal 582-bar tower design 

 

 
Figure 16. 1104-bar helipad structure [18]  

 

3.5 1104-bar helipad  

The helipad truss of Fig. 16 with diameter of 21m in the outer top ring and 18m in the inner 

ring is considered for sizing design. The structure is made of steel with density of 

7850kg/m3, elasticity modulus of 203.9GPa where the yield stress is 235.1MPa. Geometry 

and member grouping of this practical example have been given in literature [18].  

Each of the four central nodes, undergoes a point load of 350kgf in negative vertical 

direction while a uniform load of 300kgf/m2 is applied on the top level. Nodal displacements 

are confined within 0.005m. Meanwhile, stress constraints are given by with Equations (12) 

and (13). Section areas for 9 symmetric member group can continuously be chosen between 

10cm2 and 100cm2.  

Fig. 17 shows STA convergence to a solution of this example in 100 iterations. In another 

word, within 3997 structural analyses STA has captured the structural weight of 25723.73kg. 

It is superior to the results of Teaching Learning-Based Optimization [48], Ant Lion 

Optimizer [49], Thermal Exchange Optimization [23] and Whale Optimization 

Algorithm[50], as reported in Table 11. Such superiority is observed not only in the best but 

also in the mean result of STA; while its VI stands in the middle rank. It is also evident from 

Fig. 18 that displacement constraint is successfully activated by STA. 
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Table 11: Comparison of the results for 1104-bar helipad design 

 TLBO ALO TEO WOA STA 

A1(cm2) 16.78 36.19 18.49 28.57 16.17 

A2 31.24 26.55 29.63 25.62 31.80 

A3 53.61 41.55 67.88 48.86 49.37 

A4 10.63 11.01 10.00 10.00 10.96 

A5 26.85 27.64 25.54 47.81 26.22 

A6 10.29 11.18 10.00 10.23 10.04 

A7 22.46 29.51 30.85 11.69 20.89 

A8 10.11 11.05 10.34 10.00 10.03 

A9 81.09 71.95 72.05 84.15 87.20 

Best (kg) 25761.48 26632.82 26017.72 27714.31 25723.73 

Mean(kg) 26678.20 27466.38 26539.29 33594.71 26348.68 

NFE 4000 4000 4000 4000 4000 
NR 10 10 10 10 10 
VI 1.20 1.08 0.43 4.11 1.12 

 

 

 
Figure 17. Convergence curves of 1104-bar helipad design 
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Figure 18. Structural responses of optimal 1104-bar tower design 

 

 

4. DIVERSITY STUDY AND DISCUSSION 
 

In order to better study behavior of STA, variantion of player position is averaged over the 

entire population by the following measure: 

 

1

1
 

pN

New Old

i i

ip

MVN X X
N 

   (14) 

 

Tracing such an index among iterations of the algorithm, will give further insight on its 

behavior. The index will approach zero when all the players tend to stop at their final 

positions; i.e. the algorithm converges to the solution state. However, it is not the case at 

early iterations of the methd when it is discovering differnt regions of the search space. In 

another word, tracing MVN declares how a meta-heuristic algorithm changes from more 

exploration to more exploitation (convergence) during iterations of the search.  

Such a study is perfomed for the treated examples and the results are demonstrated in 

Fig. 19. Differences are observed in MVN curves when the problem is changed; that means 

STA can robustly change its trend of diversity variation case by case. As an interesing 

example, consider two verisons of 25-bar truss optimization problem; i.e. the discrete and 

the continuous version. According to Fig. 19, MVN curves differ between the 

aforemnetioned cases: at final iterations of continuous problem MVN is approaching zero 

but it continues to show considerable fluctuations in the discrete 25-bar design problem. 

Similar phenomenon is declared (more or less) between other treated discrete and 

continuous examples in Fig. 19. A common trend is observed among these problems; STA 

starts with a high diversity, experiences considerable drop at some early iterations and 

continues with lower overall diversity up to the convergence.  

In most cases, STA shows some fluctuations during decreasing MVN; however, problem 

complexity or its discrete/coninuous type can alter the bandwidth of such fluctuations and 
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their frequency of occurence. Capturing high quality optima in these examples confirms 

effectiveness of such diversity preservation in escaping from local optima traps.  

 

 

 

 
Figure 19. MVN variation trends in the treated examples 
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5. CONCLUSION 
 

A novel meta-heuristic method is developed based on some player actions in two competting 

teams on the opposite sides. It was applied to a number of literature benchmarks in 

rewarding field of structural sizing design, in a variaty of small to large-scale and 

discrete/continuous constrained problems.  

The proposed meta-heuristic algorithm exhibited competitive performance with the other 

treated literature works in capturing optimal sizing designs. Higher quality designs of STA 

were observed particularly in discrete and larger-scale structural examples. STA obtained 

such results with lower computational effort than the others. Activating stress or displacemet 

constraints in each problem confirms optimality of the solution revealed by STA.  

Since literature works were run with differnet number of runs or structural analyses, a 

variation index is utilized for better comparison of their robustness. According to the results 

STA is distinguished with moderate VI and even first rank in some cases. Note that the 

proposed method utilizes just two common control parameters. Reducing the parameter 

tuning effort can in charge affect the problem-specific search refinement. Nevertheless, STA 

has escaped from local optima in the studied examples revealing high quality solutions with 

respect to the others. The empoyed switching opertaors in the algorithm view have led to 

fluctuating behavior in the diversity view; that provides theoretical support for such 

numerical observations.  

In the light of the present study, an interesting method has been offerred for optimization 

of constrained problems; specially when diversity maintenance is desired to overpass local 

optima. 
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