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ABSTRACT 
 

Meta-heuristic algorithms are applied in optimization problems in a variety of fields, 

including engineering, economics, and computer science. In this paper, seven population-

based meta-heuristic algorithms are employed for size and geometry optimization of truss 

structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical 

Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based 

Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation 

Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to 

tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of 

truss structures while satisfying some constraints on their natural frequencies. The capability 

and robustness of the algorithms is investigated through four well-known benchmark truss 

structure examples. 
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1. INTRODUCTION 
 

Optimization approaches can be classified into two main categories, including 

deterministic approaches, and meta-heuristics. In deterministic approaches, also known 

by mathematical programming, utilizing analytical properties of the problem, a sequence 

of points converging to a global optimum is generated. Due to difficulties of the 
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deterministic approaches, meta-heuristics are getting more attention. In this regard, 

numerous meta-heuristic algorithms have been developed as efficient tools for solving 

complicated optimization problems. Meta-heuristics have found many applications in 

various disciplines such as engineering, economics, and medicine. Meta-heuristics can 

be classified based on several criteria. The most common classification of meta-

heuristics is population-based optimization versus single-solution-based optimization 

[1]. In the population-based meta-heuristics, a set of solutions is generated and spread 

over the design space. Next, an iterative search procedure continues until a termination 

criterion is fulfilled.  

One of the most challenging issues for structural designers is time and resource 

management. For this purpose, structural designers can use meta-heuristics as 

appropriate answer to overcome these problems, especially for complicated structures. 

Truss structures are among the most common structures in the structural engineering and 

have numerous applications in construction industry, including bridges, roofs, and 

industrial buildings. Therefore, economical and safe design of these structures is very 

significant. In general, truss structure optimization problems can be classified into three 

different categories of size optimization, geometry optimization, and topology 

optimization. In most structural optimization problems, either a dual combination of 

these three areas is used or all three areas are considered. Truss optimization under 

frequency constraints gives the ability to a designer to control the selected frequencies in 

a desire fashion in order to improve the dynamic characteristics of the structure. So truss 

optimization with frequency constraints has been receiving considerable attention in the 

past decades. Extensive efforts have been put into this field and remarkable 

achievements have been made. For instance, Lingyun et al. [2] employed Genetic 

Algorithm (GA) for optimal sizing and shape design of truss structures with frequency 

constraints. Kaveh and Talatahari [3] performed optimal design of truss structures with 

discrete variables using an efficient hybrid algorithm so-called Discrete Heuristic 

Particle Swarm Ant Colony Optimization (DHPSACO). In 2009, Kaveh and Talatahari 

[4] employed Big Bang-Big Crunch (BB-BC) algorithm in order to optimize space truss 

structures. Kaveh and Zolghadr [5] examined the performance of a hybridized CSS-

BBBC algorithm on optimum design of truss structures with natural frequency 

constraints. Kaveh and Khayatazad [6] utilized Ray Optimization (RO) algorithm in 

order to optimized size and geometry of truss structures. Kaveh and Zolghadr [7] 

performed optimal size and layout of truss structures with frequency constraints using 

Democratic Particle Swarm Optimization (DPSO). In 2014, Kaveh et al. [8] introduced a 

new method namely Chaotic Swarming of Particles (CSP) and employed it for size 

optimization of truss structures. Kaveh and Mahdavi [9] used Colliding Bodies 

Optimization (CBO) algorithm to optimize truss structures with continuous variables. 

Kaveh et al. [10] applied Dolphin Echolocation Optimization (DEO) algorithm for 

optimal design of truss structures with natural frequencies. In 2015, Kaveh and Ilchi 

Ghazaan [11] utilized Improved Ray Optimization (IRO) algorithm to solve truss layout 

and sizing optimization with multiple natural frequency constraints. Kaveh and Ilchi 

Ghazaan [12] employed two hybridized optimization algorithm for finding the optimal 
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mass of truss structures with natural frequency constraints. In 2016, Kaveh and Ilchi 

Ghazaan [13] performed optimal design of truss structures with multiple natural 

frequency constraints utilizing Vibrating Particles System (VPS) algorithm. Degertekin 

et al. [14] evaluated the suitability of the Jaya Algorithm (JA) for weight minimization 

of truss structures. 

In this study, the performance of seven different population-based meta-heuristic 

algorithms is studied in the optimum design of truss structures with multiple natural 

frequency constraints. These algorithms consist of Artificial Bee Colony (ABC), 

Cyclical Parthenogenesis Algorithm (CPA), Cuckoo Search (CS), Teaching-Learning-

Based Optimization (TLBO), Vibrating Particles System (VPS), Water Evaporation 

Optimization (WEO), and a hybridized ABC-TLBO. To evaluate the performance of the 

utilized meta-heuristics, they are applied to optimal design of four well-known 

benchmark trusses.  
The rest of this paper is structured as follows: In Section 2, the utilized meta-heuristic 

algorithms are presented, and the optimization problem is defined. Section 3 includes four 

benchmark truss examples. In addition, the results of the Taguchi method are presented in 

this section. Eventually, the last section concludes the paper. 

 

  

2. MATERIALS AND METHODS 
 

2.1 Meta-heuristic algorithms 

In this paper, seven population-based meta-heuristic optimization algorithms are employed 

to minimize the weight of truss structures. These algorithms are as follows: Artificial Bee 

Colony (ABC) algorithm, Big Bang-Big Crunch (BB-BC) algorithm, Cyclical 

Parthenogenesis Algorithm (CPA), Cuckoo Search (CS) algorithm, Thermal Exchange 

Optimization (TEO) algorithm, Teaching-Learning-Based Optimization (TLBO) algorithm, 

Water Evaporation Optimization (WEO), and a hybridized ABC-TLBO algorithm. Kaveh 

and Bakhshpoori [1] coded the original version of the first six algorithms and characterized 

their properties. The meta-heuristics are presented briefly in the following sections. 

 

2.1.1 Artificial bee colony algorithm (ABC) 

The Artificial Bee Colony (ABC) algorithm, has been introduced by Karaboga in 2005 [15], 

uses the foraging behaviour of the honey bees. In this algorithm, each candidate solution is 

represented by a food source, and its nectar quality corresponds to the objective function of 

that solution. These food sources are modified by honey bees in a repeated manner aiming to 

reach food sources with better nectar. In ABC, there are three types of honey bees: 

employed or recruited, onlooker, and scout bees, with each having different responsibilities. 

Bees perform modification with different techniques according to their duties. In each 

iteration, the ABC algorithm searches in three sequential phases. Employed bees modify the 

food sources and share their information with onlooker bees. Onlooker bees select a food 

source based on the information from employed bees and try to modify it. Scout bees 

perform random searches in the vicinity of the hive.  

After randomly generating initial bees, iterative process of the algorithm starts until 



A. Kaveh, K. Biabani Hamedani and F. Barzinpour 

 

234 

stopping criterion is achieved. Each iteration is composed of three sequential phases. In the 

first phase which is known as employed or recruited phase, bees search for new food sources 

based on the information of the individual understandings. In the second phase or onlooker 

phase, all employed bees share their information of food sources (position and nectar 

quality) with onlookers in the dance area. The most promising food source is selected by the 

onlookers based on a selection probability scheme such as the fitness proportionate selection 

scheme. More onlookers get attracted toward superlative food sources. It should be noted 

that the number of onlookers is the same as the employed bees and both are the same as the 

number of food sources around the hive. In other words, every bee whether employee or 

onlooker corresponds to one food source. The third phase (the scout bee phase) starts if a 

food source cannot be further improved for a predefined number of trials. In this phase, the 

food source had to be deserted, and its coupled employed bee transformed into a scout bee. 

The abandoned food sources are replaced with the randomly generated new ones by the 

scout bees in the search space. In the following, these phases are formulated as follows: 
1. Generation of new honey bees (𝑛𝑒𝑤𝐻𝐵) based on the recruited or employed bees 

strategy. Each employed bee attempts to find a new better food source by searching around 

its corresponding food source with a random permutation-based step size toward a randomly 

selected other food source except for herself. This phase can be stated mathematically as: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × (𝐻𝐵 −𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)]) 

𝑛𝑒𝑤𝐻𝐵 = 𝐻𝐵 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 
(1) 

 

where 𝑟𝑎𝑛𝑑(𝑖)(𝑗) is a random number chosen from the continuous uniform distribution on 

the [-1, 1] interval, 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 is different rows permutation functions, 𝑖 is the number of 

honey bees, and 𝑗 is the number of dimensions of the problem. This phase enables the ABC 

in the aspect of diversification so that each bee attempts to search its own neighborhood. It 

should be noted that this search takes place over large steps at the beginning of the algorithm 

and gradually it gets smaller as the population approaches each other with the completion of 

the algorithm process. 

2. Generate new honey bees (𝑛𝑒𝑤𝐻𝐵 ) based on the onlooker bees strategy. After 

completing search process of all the employed bees, share their information (nectar quality 

and position) of corresponding food sources with onlooker bees. The numbers of employed 

and onlooker bees are the same. Each onlooker bee is attracted by an employed bee with the 

probability 𝑃𝑖, and she selects a food source associated with that employed bee to generate 

new food source for possible modification. It seems that onlooker bees are more attracted 

with food sources with better nectar quality. A selection probability scheme such as the 

fitness proportionate selection or roulette wheel selection scheme is used in the ABC 

calculated by the following expression: 

 

𝑃𝑖 = 𝑃𝐹𝑖𝑡𝑖/∑ 𝑃𝐹𝑖𝑡𝑖

𝑛𝐻𝐵

𝑖=1

 (2) 

 

in which 𝑃𝐹𝑖𝑡𝑖 is the penalized objective function of the 𝑖-th food source. After choosing a 

food source (𝐻𝐵𝑟𝑤𝑠) based on the roulette wheel selection scheme by the 𝑖-th onlooker bee, 
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a neighborhood source is determined by adding a permutation-based random step wise 

toward a randomly selected food source except herself: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × (𝐻𝐵𝑟𝑤𝑠 − 𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)]) 

𝑛𝑒𝑤𝐻𝐵 = {
𝐻𝐵𝑟𝑤𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒,      if 𝑟𝑎𝑛𝑑 < 𝑚𝑟
𝐻𝐵𝑟𝑤𝑠,                                    otherwise

 
(3) 

 

where 𝑟𝑎𝑛𝑑(𝑖)(𝑗) is a random number chosen from the continuous uniform distribution on 

the [-1, 1] interval, 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 is different rows permutation functions, 𝑖 is the number of 

honey bees, and 𝑗  is the number of dimensions of the problem. Another parameter, 

modification rate (𝑚𝑟), is defined in the version of the ABC algorithm for constrained 

optimization as a control parameter that controls whether the selected food source by 

onlooker bee will be modified or not. 𝑅𝑎𝑛𝑑 is a randomly chosen real number in the range 

[0, 1]. This phase ensures the intensification capability of the algorithm so that onlooker 

bees prefer further to explore the neighborhood of the superlative food sources. 
3. In scout bee phase, employed bees who cannot modify their food sources after a 

specified number of trials (𝐴 ) become scouts. The corresponding food source will be 

abandoned, and a random-based new food source will be generated in the vicinity of the 

hive. This phase merely produces diversification and allows to have new and probability 

infeasible candidate solutions. It sounds that this phase will be active in the near to end 

cyclic process of the algorithm.  

 

2.1.2 Cyclical Parthenogenesis Algorithm (CPA) 

Cyclical Parthenogenesis Algorithm (CPA) is developed by Kaveh and Zolghadr [16]. This 

algorithm is inspired by the social behaviour and reproduction of zoological species like 

aphids. Each candidate solution in this algorithm is considered as an aphid and the 

candidates are grouped into several colonies with equal numbers of aphids each inhabiting a 

host plant. Each colony iteratively tries to improve the quality of its aphids by reproduction 

mechanisms with and without mating with a chance to get merit from other colonies using 

an information exchange mechanism. The role (female or male) of each aphid in each 

colony is determined depending on their quality. Each colony reproduces independently to 

improve the position of its aphids in the search space. In order to prevent the reproduction of 

colonies independently to benefit the winged aphids, colonies can exchange a level of 

information between themselves. Colony improvements exchange between them and 

information are repeated in the cyclic body of the algorithm to fulfil the stopping criterions 

in order to direct each colony toward a better position in the search space. The rules of CPA 

are stated at the following: 

Rule 1 (Initialization): CPA starts from a set of candidate solutions or aphids randomly 

generated within the search space. The number of aphids is considered as 𝑛𝐴. These aphids 

are grouped into 𝑛𝐶 number of colonies with the same number of members or aphids (𝑛𝑀). 

The concept of multiple colonies allows CPA to search different portions of the search space 

more or less independently and prevents the unwanted premature convergence phenomenon. 

For coding CPA in a simple manner and to be easy for tracing, the colonized aphids are 

determined by a cell array (𝐶𝐴). Therefore, 𝐶𝐴 is an array of 𝑛𝐶 colonies with 𝑛𝑀 aphids. 
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After evaluation of the initial population or the colonized aphids, the corresponding 

objective function (𝐹𝑖𝑡 ) and penalized objective function (𝑃𝐹𝑖𝑡 ) cells are produced. 

According to this rule, 𝑛𝑀 is not considered as a population parameter of the algorithm, so 

that can be calculated using two population parameters of the algorithm: 𝑛𝑀 = 𝑛𝐴/𝑛𝐶. It 

should be noted that CPA considers 𝑛𝑀 unchanged in the optimization procedure. 

Rule 2 (Reproduction or Parthenogenesis of Aphids): In each iteration, 𝑛𝑀  new 

candidate solutions or offspring are generated in each of the colonies. These new solutions 

can be reproduced either with or without mating. A ratio 𝐹𝑟 of the best of the new solutions 

of any colony are considered as female aphids; the rest are considered as male aphids. 

Therefore in each colony, 𝐹𝑟 × 𝑛𝑀 number of offspring will be reproduced without mating, 

and (1 − 𝐹𝑟) × 𝑛𝑀 number of offspring will be reproduced with mating. Altogether 𝑛𝑀 

number of offspring will be reproduced. For reproducing 𝐹𝑟 × 𝑛𝑀  number of offspring 

without mating, a female parent (𝐹) is selected randomly from the female aphids of the 

colony for 𝐹𝑟 × 𝑛𝑀 times. Then, this randomly selected female parent reproduces a new 

offspring without mating by the following expression:  

 

𝑛𝑒𝑤𝐶𝐴 = 𝐹 + 𝛼1 ×
𝑟𝑎𝑛𝑑𝑛

𝑁𝐼𝑇𝑠
× (𝑈𝑏 − 𝐿𝑏) (4) 

 

where 𝑟𝑎𝑛𝑑𝑛 is a random number drawn from a normal distribution, 𝑁𝐼𝑇𝑠 is the current 

number of algorithm iteration, and 𝛼1  is a scaling parameter for controlling step size of 

searching. In order to reproduce (1 − 𝐹𝑟) × 𝑛𝑀  number of offspring, each of the male 

aphids (𝑀) selects a female aphid (𝐹) randomly in order to produce an offspring through 

mating: 

 

𝑛𝑒𝑤𝐶𝐴 = 𝑀 + 𝛼2 × 𝑟𝑎𝑛𝑑 × (𝐹 −𝑀) (5) 

 

where 𝑟𝑎𝑛𝑑 is a random number uniformly distributed within (0, 1) interval and 𝛼2  is a 

scaling parameter for controlling searching step size. It can be seen that in this type of 

reproduction, two different solutions share information, while when reproduction occurs 

without mating, the new solution is generated using merely the information of one single 

parent solution. 

Rule 3 (Death and Flight): When all of the new solutions or offspring of all colonies are 

generated and the objective function values are evaluated, flying occurs with a probability of 

Pf where two of the colonies are selected randomly and named as 𝑐𝑜𝑙𝑜𝑛𝑦1 and 𝑐𝑜𝑙𝑜𝑛𝑦2. A 

winged aphid is reproduced by and identical to the best female of 𝑐𝑜𝑙𝑜𝑛𝑦1 and then flies to 

𝑐𝑜𝑙𝑜𝑛𝑦2. In order to keep the number of members of each colony constant, it is assumed 

that the worst member of 𝑐𝑜𝑙𝑜𝑛𝑦2 dies. Parameter 𝑃𝑓 is responsible for defining the level of 

information exchange among the colonies. With no possible flights (𝑃𝑓 = 0), the colonies 

would be performing their search in a completely independent manner, i.e., an optimization 

runs with 𝑛𝐴 aphids divided into 𝑛𝐶 colonies would be similar to 𝑛𝐶-independent runs each 

with 𝑛𝑀 = 𝑛𝐴/𝑛𝐶 aphids in one colony. It is obvious that this would not be particularly 

favorable since it is, in fact, changing the population of aphids without actually utilizing the 

abovementioned benefits of the multiple colonies. On the other hand, permitting too many 

flights (𝑃𝑓 = 1) results in the same effect by merging the information sources of different 
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colonies. It is important to note that at the early stages of the optimization process, it is more 

favorable to give the colonies a higher level of independence so that they can search the 

problem space without being affected by the other colonies. However, as the optimization 

process proceeds, it is desirable to let the colonies share more information so as to provide 

the opportunity for the more promising regions of the search space to be searched 

thoroughly. Considering 𝑃𝑓 linearly increasing from 0 to 1 results in the best performance 

of the algorithm, since it conforms to the abovementioned discussion on information 

circulation: 

 

𝑃𝑓 = (𝑁𝐼𝑇𝑠 − 1)/(𝑚𝑎𝑥𝑁𝐼𝑇𝑠 − 1) (6) 

 

Rule 4 (Updating the Colonies or the Replacement Strategy): Considering the fact that 

the aphids of each colony are capable of reproducing a genetically identical offspring 

without mating, CPA compares the newly generated set of offspring based on Rule 2 for 

each colony with the current position of the colony and transmits the 𝑛𝑀 best ones for the 

next iteration. 

Rule 5 (Termination Criteria): A maximum number of objective function evaluations 

(𝑚𝑎𝑥𝑁𝐹𝐸𝑠) or a maximum number of algorithm iterations (𝑚𝑎𝑥𝑁𝐼𝑇𝑠) is considered as the 

stopping criterion. 

 

2.1.3 Teaching-learning-based optimization algorithm (TLBO) 

Rao et al. [18] developed the Teaching-Learning-Based Optimization (TLBO) algorithm in 

2011 which is based on the classical school learning process. TLBO consists of two stages: 

the effect of a teacher on learners and the influence of learners on each other. In this 

algorithm, the initial population comprising of students or learners is selected randomly. In 

each iteration, the smartest student with the highest objective function is assigned as the 

teacher. Students are updated iteratively to search the optimum within two phases: based on 

the knowledge transfer from the teacher (teacher phase) and interaction with other students 

(learner phase). In TLBO the performance of the class in learning or the performance of the 

teacher in teaching is considered as a normal distribution of marks obtained by the students. 

TLBO improves other students in the teacher phase by employing the difference between the 

teacher’s knowledge and the average knowledge of all the students. The knowledge of each 

student is obtained based on the position taken place by that student in the search space. In a 

class, students also improve themselves via interacting with each other after the teaching is 

completed. In the learner phase, the TLBO algorithm improves the quality of each student 

by the knowledge interaction between that student and another randomly selected one. In the 

following, these two phases are presented and formulated: 

1. Generation or education of the new learners (𝑛𝑒𝑤𝐿) based on the teacher phase. The 

class performance as a normal distribution of grades obtained by students can be 

characterized with the mean value of the distribution. In this phase TLBO aims to improve 

the class performance by shifting the mean position of the class individuals toward the best 

learner which is considered as the teacher. This phase is the elitism or global search or 

intensification ability of the algorithm. In this regard, TLBO updates the learners by a step 

size toward the teacher obtained based on the difference between the teacher’s position and 

the mean position of all students combining with randomization. Considering the mean 
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position of students in the search space as 𝑀𝑒𝑎𝑛𝐿, this phase can be formulated as follows: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 = 𝑇 − 𝑇𝐹𝑖 ×𝑀𝑒𝑎𝑛𝐿 

𝑛𝑒𝑤𝐿 = 𝐿 + 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 

𝑖 = 1,2,… , 𝑛𝐿   and   𝑗 = 1,2,… , 𝑛𝑉 

(7) 

 

in which 𝑟𝑎𝑛𝑑(𝑖)(𝑗) is a random number chosen from the continuous uniform distribution on 

the [0, 1] interval and 𝑇𝐹  is a teaching factor considered for controlling how much the 

teacher will change the mean knowledge of the class which can be either 1 or 2. 

2. Generating new learners (𝑛𝑒𝑤𝐿) or updating the knowledge of students by interacting 

with each other in the learner phase. In this phase, each student interacts with a randomly 

selected one (𝐿𝑟𝑝 ) except him or her for possible improvement of knowledge. After 

comparison, the student will be moved toward the randomly selected one if it is smarter 

( 𝑃𝐹𝑖𝑡𝑖 < 𝑃𝐹𝑖𝑡𝑟𝑝 ) and shifted away otherwise. The learner phase can be stated 

mathematically in the following equation: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 = {
𝐿𝑖 − 𝐿𝑟𝑝,      𝑃𝐹𝑖𝑡𝑖 < 𝑃𝐹𝑖𝑡𝑟𝑝
𝐿𝑟𝑝 − 𝐿𝑖,      𝑃𝐹𝑖𝑡𝑖 ≥ 𝑃𝐹𝑖𝑡𝑟𝑝

 

𝑛𝑒𝑤𝐿 = 𝐿 + 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 

𝑖 = 1,2,… , 𝑛𝐿   and   𝑗 = 1,2,… , 𝑛𝑉 

(8) 

 

in which 𝑟𝑎𝑛𝑑(𝑖)(𝑗) is a random number chosen from the continuous uniform distribution on 

the [0, 1] interval. The learner phase is the diversification capability of the algorithm by 

which each individual tries to improve by searching its neighborhood and sharing 

information with one randomly selected individual. The step size of search will be decreased 

gradually as the students approach each other with the progress of the algorithm. 

 

2.1.4 Cuckoo search algorithm (CS) 

Yang and Deb [17] developed Cuckoo Search (CS) as a population-based meta-heuristic 

algorithm inspired by the behaviour of some cuckoo species. Cuckoos are fascinating birds 

due to their aggressive reproduction strategy. These species lay their eggs in the nests of 

other host birds. The host takes care of the eggs presuming that the eggs are of its own. 

However, some of the host birds can combat this parasitic behaviour of cuckoos and throw 

out the discovered alien eggs or build their new nests in new locations. In the search space, 

all the nests or eggs whether they belong to the cuckoos or host birds, represent the 

candidate solutions. Cuckoos and host birds try to breed their generation. In the cyclic body 

of the algorithm, cuckoos and host birds perform two sequential search phases. First, the 

cuckoos produce the eggs. In this phase, eggs are produced by guiding the current solutions 

toward the best possible solution. Then these new eggs are intruded to the nests of host birds 

based on the replacement strategy. After cuckoo breeding, it turns to the host birds. If a 

cuckoo’s egg is very similar to a host’s egg, then this cuckoo’s egg is less likely to be 

discovered. In this phase host birds discover a fraction of alien eggs and update them by 

addition of a random permutation-based step size. Based on the replacement strategy, the 

host bird replaces the produced egg with the current one. These two search phases are 
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repeated in the cyclic body of the algorithm until it reaches a stopping criterion. In the 

following after introducing the Levy flight, CS is formulated in two phases:  

Levy Flights as Random Walks: The randomization plays an important role in both 

exploration and exploitation in meta-heuristic algorithms. The essence of such 

randomization is random walks. A random walk is a random process which consists of 

taking a series of consecutive random steps. Let 𝑆𝑁  denote the sum of each consecutive 

random step 𝑋𝑖; then 𝑆𝑁 forms a random walk: 

 

𝑆𝑁 =∑𝑋𝑖

𝑁

𝑖=1

= 𝑋1 + 𝑋2 +⋯+ 𝑋𝑁 = 𝑆𝑁−1 + 𝑋𝑁 (9) 

 

where 𝑋𝑖 is a random step drawn from a random distribution, which means the next state 

will only depend on the current existing state and the motion or transition 𝑋𝑁  from the 

existing state to the next state. If each step is carried out in the 𝑛-dimensional space, the 

random walk becomes in higher dimensions. There is no reason why each step length should 

be fixed. In fact, the step size can also vary according to a known distribution. For example, 

if the step length obeys the Gaussian distribution, the random walk becomes the Brownian 

motion. A very special case is when the step length obeys the Levy distribution; such a 

random walk is called a Levy flight or Levy walk. From the implementation point of view, 

the generation of random numbers with Levy flights consists of two steps: choice of a 

random direction and the generation of steps which obey the chosen Levy distribution, while 

the generation of steps is quite tricky. There are a few ways for achieving this, but one of the 

most efficient and yet straightforward ways is to use the so-called Mantegna algorithm. In 

Mantegna’s algorithm, the step length 𝑆 can be calculated by 

 

𝑆 =
𝑢

|𝑣|1/𝛽
 (10) 

 

where 𝛽 is a parameter between [1, 2] interval; 𝑢 and 𝑣 are drawn from normal distribution. 

That is 

 

𝑢~𝑁(0, 𝜎𝑢
2), 𝑣~𝑁(0, 𝜎𝑣

2) (11) 

 

where 

 

𝜎𝑢 = {
𝛤(1 + 𝛽) × sin(𝜋𝛽/2)

𝛤((1 + 𝛽)/2) × 𝛽 × 2(𝛽−1)/2
} , 𝜎𝑣 = 1 (12) 

 

First phase (Cuckoo Breeding): In this step, all the nests except the best one (𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡) 
are replaced based on their quality by new cuckoo eggs (𝑛𝑒𝑤𝑁𝑒𝑠𝑡) produced by guiding the 

current solutions (𝑁𝑒𝑠𝑡) toward the 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 in combination with the Levy flight as: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × 𝛼 × 𝑆 × (𝑁𝑒𝑠𝑡 − 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡) 

𝑛𝑒𝑤𝑁𝑒𝑠𝑡 = 𝑁𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 
(13) 
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where 𝛼 is the step size parameter and should be considered more than zero and should be 

related to the scales of the problem; 𝑟𝑎𝑛𝑑(𝑖)(𝑗)  is a random number chosen from the 

continuous uniform distribution on the [-1, 1] interval, and 𝑆 is a random walk based on the 

Levy flights. This phase guarantees the elitism and intensification ability of the algorithm. 

The 𝑏𝑒𝑠𝑡𝑁𝑒𝑠𝑡 is kept unchanged and other solutions updated toward it. 

Second phase (Alien Eggs Discovery by the Host Birds): The alien eggs discovery is 

performed for each component of each solution in terms of the discovering probability 

matrix (𝑃) such as: 

 

𝑃(𝑖)(𝑗) = {
1,      if      𝑟𝑎𝑛𝑑 < 𝑝𝑎
0,      if      𝑟𝑎𝑛𝑑 ≥ 𝑝𝑎

 (14) 

 

where 𝑟𝑎𝑛𝑑 is a random number in [0, 1] interval and 𝑝𝑎 is the discovering probability. It 

should be noted that the 𝑃 matrix has the same size as the 𝑁𝑒𝑠𝑡 matrix. Existing eggs are 

replaced considering their quality by the newly generated ones from their current positions 

through random walks with a random permutation-based step size such as: 

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × (𝑁𝑒𝑠𝑡[𝑟𝑎𝑛𝑑𝑝1(𝑖)(𝑗)] − 𝑁𝑒𝑠𝑡[𝑟𝑎𝑛𝑑𝑝2(𝑖)(𝑗)]) 

𝑛𝑒𝑤𝑁𝑒𝑠𝑡 = 𝑁𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝑃 
(15) 

 

where 𝑟𝑎𝑛𝑑𝑝1  and 𝑟𝑎𝑛𝑑𝑝2  are random permutation functions used for different rows 

permutation applied on 𝑁𝑒𝑠𝑡 matrix and 𝑃 is the discovery probability matrix. This phase 

guarantees the diversification ability of the algorithm. 

 

2.1.5 Vibrating particles system algorithm (VPS) 

Vibrating Particles System (VPS) algorithm is a meta-heuristic search algorithm suggested 

by Kaveh and Ilchi Ghazaan [19]. This algorithm is motivated by the free vibration of 

systems with single degree of freedom having a viscous damper. Similar to other 

population-based meta-heuristics, VPS starts with a random set of initial solutions and 

considers them as the free vibrated single degree of freedom systems with viscous damper. 

For under-damped conditions, each free vibrated system or vibrating particle oscillates and 

returns to its equilibrium state. As the optimization process proceeds, using the combination 

of randomness and exploitation of the obtained results, VPS iteratively improves the quality 

of the particles by oscillating them toward the equilibrium position. The equilibrium position 

of each particle is considered as three parts, the best position achieved so far across the 

whole population (HP), a good particle (GP), and a bad particle (BP). In this way the main 

features of the VPS consists of three essential concepts, self-adaptation (particle moves 

toward HB), cooperation (the GP and BP, that are selected from particles themselves, can 

influence the new position of the particles), and competition (the influence of GP being 

higher than that of BP). The number of vibrating particles is considered as 𝑛𝑉𝑃. These 

particles form the matrix of Vibrating Particles (𝑉𝑃 ). After evaluating the objects, the 

corresponding objective function (𝐹𝑖𝑡) and the penalized objective function (𝑃𝐹𝑖𝑡) are 

produced. VPS updates the particles in a way that considers for each particle, three 

equilibrium positions with different weights (𝜔1 , 𝜔2 , and 𝜔3) that the particle tends to 
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approach: (1) the best position achieved so far across the entire population (HP), (2) a good 

particle (GP), and (3) a bad particle (BP). In order to select GP and BP for each particle, the 

current population is sorted according to their penalized objective function values in an 

increasing order, and then GP and BP are chosen randomly from the first and second halves 

except itself, respectively. Damping level plays an important role in the vibration. Much 

more damping level higher rate at which the amplitude of a free damped vibration decrease. 

In order to model this phenomenon in the VPS, a descending function (𝐷) proportional to 

the number of iterations is proposed as follows: 

 

𝐷 = (𝑁𝐼𝑇𝑠/𝑚𝑎𝑥𝑁𝐼𝑇𝑠)−𝛼 (16) 

 

where 𝑁𝐼𝑇𝑠 is the current iteration number of the algorithm, 𝑚𝑎𝑥𝑁𝐼𝑇𝑠  is the maximum 

number of algorithm iterations considered as the stopping criteria, and 𝛼  is a constant. 

According to the mentioned concepts, the particles are updated by the following formula 

which will be read as free vibration formula hereafter: 

 

𝑛𝑒𝑤𝑉𝑃𝑖 = 𝜔1(𝐷 × 𝐴 × 𝑟𝑎𝑛𝑑 + 𝐻𝑃) + 𝜔2(𝐷 × 𝐴 × 𝑟𝑎𝑛𝑑 + 𝐺𝑃𝑖)
+ 𝜔3(𝐷 × 𝐴 × 𝑟𝑎𝑛𝑑 + 𝐵𝑃𝑖) 

𝐴 = 𝜔1 × (𝐻𝑃 − 𝑉𝑃𝑖) + 𝜔2 × (𝐺𝑃𝑖 − 𝑉𝑃𝑖) + 𝜔3 × (𝐵𝑃𝑖 − 𝑉𝑃𝑖) 
𝜔1 + 𝜔2 + 𝜔3 = 1 

(17) 

 

in which 𝑉𝑃𝑖  and 𝑛𝑒𝑤𝑉𝑃𝑖  are the current and updated positions of the 𝑖 -th particle, 

respectively; 𝜔1, 𝜔2, and 𝜔3 are three weights to measure the relative importance of the 

best-so-far particle found by the algorithm (HP), the good particle (GP), and bad particle 

(BP) of the 𝑖-th particle, respectively; and 𝑟𝑎𝑛𝑑s are random numbers uniformly generated 

between zero and one. A parameter like 𝑝 within (0, 1) is defined, and it is specified whether 

the effect of BP must be considered in updating position or not. For each particle, 𝑝 is 

compared with 𝑟𝑎𝑛𝑑 (a random number uniformly distributed in the range of [0, 1]); if 𝑝 <
𝑟𝑎𝑛𝑑 , then 𝜔3 = 0  and 𝜔2 = 1 − 𝜔1 . Three essential concepts, consisting of self-

adaptation, cooperation, and competition, are considered in VPS. A particle moves toward 

HP, so the self-adaptation is provided. Any particle has the chance to have an influence on 

the new position of the other one, so the cooperation between the particles is supplied. Due 

to the 𝑝 parameter, the influence of GP (good particle) is more than that of BP (bad particle); 

therefore, the competition is provided. As it was mentioned in the introduction section, VPS 

uses harmony search-based handling approach to deal with a particle violating the limits of 

the variables. In this approach, a vibrating particles memory (𝑉𝑃 −𝑀) is utilized to save the 

𝑛𝑉𝑃 number of the best vibrating particles and their related objective function (𝐹𝑖𝑡 − 𝑀) 

and penalized objective function (𝑃𝐹𝑖𝑡 − 𝑀) values. To fulfill this aim, vibrating particles 

memory is utilized to save the same number with the number of the particles (𝑛𝑉𝑃 ). 

Considering memory and benefitting it in the form of different strategies can improve the 

meta-heuristics performance, without increasing the computational cost. It should be noted 

again that VPS used it just for regenerating the particles exited from the search space. 

According to this mechanism, any component of the solution vector violating the variable 

boundaries can be regenerated from the 𝑉𝑃 −𝑀 as: 
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𝑉𝑃(𝑖, 𝑗) =

{
 

 
w. p. 𝑣𝑝𝑚𝑐𝑟             ⇒                select a new value from 𝑉𝑃 −𝑀,   

w. p. (1 − 𝑝𝑎𝑟)        ⇒                do nothing,                                            
w. p. 𝑝𝑎𝑟                   ⇒                choose a neighboring value,            

w. p. (1 − 𝑣𝑝𝑚𝑐𝑟)  ⇒                select a new value randomly           

 (18) 

 

where “w.p.” is the abbreviation for “with the probability,” 𝑉𝑃(𝑖, 𝑗) is the 𝑗-th component of 

the 𝑖-th vibrating particle, 𝑣𝑝𝑚𝑐𝑟 is the vibrating particle memory considering rate varying 

between 0 and 1 and sets the probability of choosing a value in the new vector from the 

historic values stored in 𝑉𝑃 −𝑀 , and (1 − 𝑣𝑝𝑚𝑐𝑟 ) sets the probability of choosing a 

random value from the possible range of values. The pitch-adjusting process is performed 

only after a value is chosen from 𝑉𝑃 −𝑀 . The value (1 − 𝑝𝑎𝑟) sets the rate of doing 

nothing, and 𝑝𝑎𝑟  sets the rate of choosing a value from neighboring the best vibrating 

particle or the particles saved in memory. For choosing a value from neighboring the best 

vibrating particle or the particles saved in memory, for continuous search space, a randomly 

generated step size can be used (±𝑏𝑤 × 𝑟𝑎𝑛𝑑).  

 

2.1.6 Water evaporation optimization algorithm (WEO) 

Kaveh and Bakhshpoori [20] developed the Water Evaporation Optimization (WEO) 

algorithm. This algorithm is inspired by evaporation of a tiny amount of water molecules on 

the solid surface with different wettability. The algorithm considers water molecules as 

individuals. The solid surface or substrate with variable wettability is reflected as the search 

space. Decreasing the surface wettability reforms the water aggregation from a monolayer to 

a sessile droplet. Such behaviour is consistent with how the layout of individuals changes to 

each other as the algorithm progresses. Decreasing the wettability of the surface can 

decrease the objective function for a minimizing optimization problem. The evaporation flux 

rate of the water molecules is considered as the most suitable measure for updating the 

individuals. Their change pattern is in good agreement with the local and global search 

ability of the algorithm and can help WEO to have well-converged behaviour and simple 

algorithmic structure. The pseudo code of the WEO algorithm for solving constrained 

optimization problems is as follows: 

Define the algorithm parameters: 𝑛𝑊𝑀 and 𝑚𝑎𝑥𝑁𝐹𝐸𝑠. 

Generate random initial water molecules (𝑊𝑀). 

Evaluate the initial molecules and form its corresponding vectors of the objective 

function (𝐹𝑖𝑡) and penalized objective function (𝑃𝐹𝑖𝑡). 
While 𝑁𝐹𝐸𝑠 ≤ 𝑚𝑎𝑥𝑁𝐹𝐸𝑠 

Update 𝑁𝐼𝑇𝑠. 

if 𝑁𝐼𝑇𝑠 ≤ 𝑚𝑎𝑥𝑁𝐼𝑇𝑠/2 

Generate new water molecules based on the monolayer evaporation strategy.  

Evaluate the newly generated water molecules, and replace the current molecules 

with the evaporated ones if the newest ones are better. 

Update 𝑁𝐹𝐸𝑠. 
else 

Generate new water molecules based on the droplet evaporation strategy. 

Evaluate the newly generated water molecules, and replace the current molecules 
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with the evaporated ones if the newest ones are better. 

Update 𝑁𝐹𝐸𝑠. 
end if 

Determine and monitor the best water molecule (𝑏𝑒𝑠𝑡𝑊𝑀). 

end While 

 

2.1.7 Hybridized ABC-TLBO algorithm (ABC-TLBO) 

The ABC-TLBO is a high-level relay hybridized algorithm. The maximum number of 

objective function evaluations is defined as the stopping criteria of the algorithm. The ABC 

algorithm works at the first half of the algorithm (the first half of objective function 

evaluations), whereas the TLBO algorithm works at the second half of the algorithm (the 

second half of objective function evaluations). In other word, when the number of objective 

function evaluations reaches to the half of the maximum number of objective function 

evaluations, the hybridized ABC-TLBO algorithm switches from the ABC algorithm to the 

TLBO algorithm.  

 

2.2 Definition of the optimization problem 

In truss size and geometry simultaneous optimization problems, the the goal is to achieve a 

minimum-weight truss structure satisfying certain constraints on natural frequencies. In 

other words, the optimization goal is to find a set of design variables to minimize the weight 

function while all constraints are satisfied. Design variables, which include nodal 

coordinates and element cross-sectional areas, are assumed to change continuously. In 

addition, each variable may be restricted within an acceptable region. The candidate 

solutions are encoded by a vector of real values. The structural topology is kept fixed in the 

design process. A truss structure is made up of structural elements called bars. The weight of 

a truss structure depends on the total amount of material used for the bars. Thus, the 

optimization problem can be described mathematically as follows [3]: 

 

Find  

{𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑛𝐷𝑉],      𝑥𝑖 ∈ 𝑆𝑖 (19) 

to minimize 

𝑃𝐹𝑖𝑡({𝑋}) = 𝑊({𝑋}) + 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) (20) 

where   

𝑊({𝑋}) =∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝑒

𝑖=1

 (21) 

subjected to:  

{

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈

𝜔𝑘 ≤ 𝜔𝑘
∗

𝜔𝑗 ≥ 𝜔𝑗
∗

 

 

(22) 

where {𝑋} is the vector of design variables, including both nodal coordinates and cross-

sectional areas; 𝑛𝐷𝑉 is the number of design variables; 𝑥𝑖 represents the  design variable 𝑖; 
𝑆𝑖  is the available set of values for the design variable 𝑥𝑖 ; 𝑊({𝑋}) denotes the objective 
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function (the weight of the truss structure); 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋})  denotes the penalty function; 

𝑃𝐹𝑖𝑡({𝑋}) denotes the penalized objective function; 𝑛𝑒 is the number of members of the 

truss; 𝜌𝑖 , 𝐴𝑖 , and 𝐿𝑖  represent the material density, length and the cross-sectional area of 

member 𝑖, respectively. 𝜔𝑘 is the 𝑘-th natural frequency of the structure and 𝜔𝑘
∗  is its upper 

bound; 𝜔𝑗 is the th natural frequency of the structure and 𝜔𝑗
∗ is its lower bound. 𝑥𝑖

𝑙 and 𝑥𝑖
𝑢 

are the lower and upper bounds of the design variable 𝑥𝑖, respectively. 

The problem constraints are handled by a simple penalizing strategy. In penalizing 

strategies, infeasible solutions are considered during the search process. The unconstrained 

objective function is extended by a penalty function that will penalize infeasible solutions. 

The penalty function is defined as:  

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) = ɛ. 𝑣,      𝑣 =∑𝑣𝑖

𝑞

𝑖=1

 (23) 

 

where 𝑞 is the number of frequency constraints; 𝜀 is the aggregation weight. In this research, 

the value of aggregation weight is considered to be equal to 109. If the 𝑖-th constraint is 

satisfied, then 𝜐𝑖 will be taken as zero, otherwise it will be taken as: 

 

𝑣𝑖 = |1 − (
𝜔𝑖
𝜔𝑖
∗)| (24) 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Parameter tuning results 

In this study, the Taguchi method is employed to tune the parameters of the meta-heuristics. 

In the Taguchi method, orthogonal arrays are used to study a large number of decision 

variables with a small number of experiments. In this method, the objective functions are 

categorized into the three groups of “Smaller is better”, “Larger is better”, and “Nominal is 

best”, with each having a particular formula for the signal-to-noise (S/N) ratio. In this study, 

the aim is to minimize the weight of the structures; hence, “Smaller is better” is selected. 

First, the parameters along with their levels are introduced. Then the proper scheme of the 

Taguchi method is selected. Next, the results are analyzed through the analysis of variance. 

Finally, the best combination of the parameters is selected for the tuned meta-heuristics. For 

each parameter, the level with higher value of S/N ratio and lower value of Mean is the best 

level of the parameter. The parameters of algorithms are tuned for the problem of size 

optimization of a 10-bar planar truss (shown in Fig. 1). The TLBO algorithm has only one 

independent parameter (number of learners (𝑛𝐿)). Therefore, the Taguchi method is not 

needed for the TLBO algorithm. In addition, the parameters of the hybridized ABC-TLBO 

algorithm are not tuned. In the following sections, the results of parameter tuning for each 

algorithm are presented. 
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3.1.1 Parameter tuning of artificial bee colony 

The ABC algorithm has three independent parameters consisting of number of honey bees 

(𝑛𝐻𝐵), specified number of trials (𝐴) by which an employed bee becomes a scout bee, and 

the modification rate (𝑚𝑟) as a control parameter that controls whether the selected food 

source by onlooker bee will be modified or not. Five levels are considered for each 

parameter; hence, in Taguchi design, “Number of factors” and “Type of Design” are chosen 

three, and “4-Level Design”, respectively. Table 1 lists the parameters of the ABC algorithm 

and their levels. According to the results obtained from the MINITAB software, best values 

for the parameters may be written as follows: 

𝑛𝐻𝐵 = 50;  𝑚𝑟 = 0.6;  𝐴 = 200  
 

Table 1: Parameters and their levels for the ABC algorithm 

Parameters 
Levels 

1 2 3 4 5 

𝑛𝐻𝐵 10 20 30 50 100 

𝑚𝑟 0.2 0.4 0.6 0.8 1 

𝐴 40 100 200 300 400 

 

3.1.2 Parameter tuning of cyclical partenogenesis algoritm 

The CPA algorithm has five independent parameters: number of aphids (𝑛𝐴), number of 

colonies (𝑛𝐶), parameters to control the searching step sizes (𝛼1 and 𝛼2), and parameter to 

determine the ratio of aphids of each colony to be considered as female (𝐹𝑟). Four levels are 

considered for each parameter; hence, in Taguchi design, “Number of factors” and “Type of 

Design” are chosen five, and “4-Level Design”, respectively. Table 2 lists the parameters of 

the CPA algorithm and their levels. According to the results obtained from the MINITAB 

software, the best values for the parameters may be written as follows: 

𝑛𝐴 = 75;  𝑛𝐶 = 7; 𝛼1 = 1; 𝛼2 = 2;  𝐹𝑟 = 0.4   
 

Table 2: Parameters and their levels for the CPA algorithm 

Parameters 
Levels 

1 2 3 4 

𝑛𝐴 30 45 60 75 

𝑛𝐶 5 7 9 11 

𝛼1 0.25 0.5 0.75 1 

𝛼2 1.25 1.5 1.75 2 

𝐹𝑟 0.2 0.4 0.6 0.8 

 

3.1.3 Parameter tuning of cuckoo search  

The CS algorithm has three independent parameters: number of nests (𝑛𝑁 ), step size 

controlling parameter (𝛼), and discovering probability (𝑝𝑎). Five levels are considered for 

each parameter; hence, in Taguchi design, “Number of factors” and “Type of Design” are 

chosen three, and “5-Level Design”, respectively. Table 3 lists the parameters of the CS 
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algorithm and their levels. According to the results obtained from the MINITAB software, 

the best values for the parameters may be written as follows: 

𝑛𝑁 = 20;  𝑝𝑎 = 0.15;  𝛼 = 1  
 

Table 3: Parameters and their levels for the CS algorithm 

Parameters 
Levels 

1 2 3 4 5 

𝑛𝑁 10 20 30 50 100 

𝑝𝑎 0.05 0.1 0.15 0.25 0.5 

𝛼 0.25 0.5 1 1.5 2 

 

3.1.4 Parameter tuning of water evaporation optimization 

The WEO algorithm has five independent parameters: number of water molecules (𝑛𝑊𝑀), 

the maximum and minimum values of the substrate interaction energy (𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛), and 

the maximum and minimum values of the contact angle (𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛). Four levels are 

considered for each parameter; hence, in Taguchi design, “Number of factors” and “Type of 

Design” are chosen five, and “4-Level Design”, respectively. Table 4 lists the parameters of 

the WEO algorithm and their levels. According to the results obtained from the MINITAB 

software, the best values for the parameters may be written as follows: 

𝑛𝑊𝑀 = 8; 𝐸𝑚𝑎𝑥 = −1; 𝐸𝑚𝑖𝑛 = −3; 𝜃𝑚𝑎𝑥 = −20; 𝜃𝑚𝑖𝑛 = −45  
 

Table 4: Parameters and their levels for the WEO algorithm 

Parameters 
Levels 

1 2 3 4 

𝑛𝑊𝑀 8 16 24 32 

𝐸𝑚𝑎𝑥 -0.25 -0.5 -1 -2 

𝐸𝑚𝑖𝑛 -3 -3.5 -4 -4.5 

𝜃𝑚𝑎𝑥 -10 -20 -25 -30 

𝜃𝑚𝑖𝑛 -35 -45 -55 -65 

 

3.1.5 Parameter tuning of vibrating particles system 

The VPS algorithm has eight independent parameters: number of vibrating particle (𝑛𝑉𝑃), 

parameters of harmony search-based handling approach (𝑣𝑝𝑚𝑐𝑟, 𝑝𝑎𝑟, and 𝑏𝑤), weights to 

measure the relative importance of the good particle and the best-so-far particle found by the 

algorithm (𝜔2 and 𝜔1), the probability of considering the effect of bad particle in updating 

position (𝑝 ), and 𝛼 . Four levels are considered for the parameter except 𝑏𝑤 . For this 

parameter, two levels are considered. Therefore, in Taguchi design, “Number of factors” and 

“Type of Design” are chosen eight, and “Mixed Level Design”, respectively. Table 5 lists 

the parameters of the VPS algorithm and their levels. According to the results obtained from 

the MINITAB software, the best values for the parameters may be written as follows:  

𝑛𝑉𝑃 = 13  𝜔1 = 𝜔2 = 0.3;  𝑏𝑤 = 0.1;  𝛼 = 0.05;  𝑝 = 0.1;  𝑣𝑝𝑚𝑐𝑟 = 0.95;  𝑝𝑎𝑟 = 0.1  
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Table 5: Parameters and their levels for the VPS algorithm 

Parameters 
Levels 

1 2 3 4 

𝑏𝑤 0.1 0.2   

𝛼, 𝑝, and 𝑝𝑎𝑟 0.05 0.1 0.15 0.2 

𝑛𝑉𝑃 10 13 16 20 

𝜔1, 𝜔2 0.1 0.2 0.3 0.4 

𝑣𝑝𝑚𝑐𝑟 0.95 0.85 0.75 0.65 

 

3.2 Optimization results 

In this section, four benchmark truss structure problems are optimized utilizing the 

employed algorithms, and the performance of the meta-heuristics are compared to each 

other. The structures are as follows: a 10-bar planar truss, a 200-bar planar truss, a 72-bar 

space truss, and a 52-bar dome-like truss. This study aims to compare the susceptibility and 

robustness of the algorithms in both aspects of the accuracy and convergence speed. The 

initial populations are generated randomly. For each Metaheuristic, the best design of 10 

independently runs is reported. Convergence curves of all algorithms are provided. The 

maximum number of analyses is considered as the stopping criterion of the algorithms. 

 

3.2.1 Example 1: the 10-bar planar truss 

Size optimization of the 10-bar planar truss shown in Fig. 1 is considered. This is a well-

known problem in the field of weight optimization of the structures with frequency 

constraints. The cross-sectional area of each of the members is considered to be an 

independent variable. A non-structural mass of 453.6 𝑘𝑔 is attached to the free nodes. Table 

6 shows the material properties, variable bounds, and frequency constraints for this example. 

This problem has been investigated by several researchers, including Lingyun et al. using 

GA [2], Kaveh and Zolghadr [5] using a hybridized CSS-BBBC algorithm, Kaveh and 

Zolghadr [7] using DPSO, Kaveh et al. [10] using DEO, Kaveh and Ilchi Ghazaan [11] 

using IRO, Kaveh and Ilchi Ghazaan [13] using VPS, etc.  

 

 
Figure 1. The 10-bar planar truss 
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Table 6: Material properties, variable bounds and frequency constraints of the 10-bar planar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 68.95 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  2767.99 

Lower bound of design variables / 𝑐𝑚2 0.645 

Upper bound of design variables / 𝑐𝑚2 50 

Frequency constraints / 𝐻𝑧 𝜔1 ≥ 7, 𝜔2 ≥ 15, 𝜔3 ≥ 20 

 

Table 7 lists the optimal results for the 10-bar truss reported by other researchers. Table 8 

lists the optimized designs obtained by the utilized algorithms for the 10-bar truss. This table 

illustrates the best optimized weights, average optimized weights and standard deviations on 

optimized weights obtained by the algorithms. The maximum number of objective function 

evaluations is defined as the stopping criteria of the algorithms, which is considered equal to 

20000 for all algorithms. The optimization results show that the algorithms have acceptable 

performances. A careful examination of Table 8 reveals that hybridized ABC-TLBO, TLBO, 

and VPS have better results in terms of the best optimized weight, average optimized 

weight, and standard deviation on optimized weights. Comparing the results obtained by the 

utilized algorithms (Table 8) with those of other researchers (Table 7) indicated that all of 

the utilized meta-heuristics converge to solutions very close to the best results of other 

researchers, which demonstrates the high performance of these algorithms. Table 9 

represents the natural frequencies of the optimized structures obtained by the algorithms. It 

can be seen that all of the constraints are satisfied. As Table 9 suggests, the values obtained 

by different algorithms for the first and third natural frequencies are very close to their lower 

bounds, while the values obtained by examined algorithms for the second natural frequency 

are not close its lower bound. This means that the first and third natural frequencies of the 

structure control the design process. Fig. 2 shows the convergence histories of the 

algorithms for the 10-bar truss. As Fig. 2 suggests, the convergence rates of hybridized 

ABC-TLBO, CPA, and TLBO are higher than those of other considered meta-heuristics. 

 
Table 7: Optimal designs found for the 10-bar plane truss problem by other researchers 

Design variable 
Areas (𝑐𝑚2) 

Ref [2] Ref [5] Ref [7] Ref [10] Ref [11] Ref [13] 

1 42.234 39.569 35.944 35.3 35.047 35.147 

2 18.555 16.740 15.530 15.1 15.138 14.669 

3 38.851 34.361 35.285 36.5 35.813 35.689 

4 11.222 12.994 15.385 15.4 15.071 15.093 

5 4.783 0.645 0.648 0.645 0.645 0.645 

6 4.451 4.802 4.583 4.6 4.630 4.622 

7 21.049 26.182 23.610 23.7 23.940 23.555 

8 20.949 21.260 23.599 24 23.823 24.468 

9 10.257 11.766 13.135 11.5 12.530 12.720 

10 14.342 11.392 12.357 13.5 12.927 12.685 

Besst weight (𝑘𝑔) 542.75 529.25 532.39 532.814 531.24 530.77 
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Table 8: Comparison of optimal designs found for the 10-bar plane truss (present work)  

Design variable 
Areas (𝑐𝑚2) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 35.0453 35.359 35.697 35.599 35.800 35.901 36.195 

2 14.9950 14.915 14.905 14.908 15.107 14.702 15.044 

3 35.5583 35.900 35.362 35.536 35.701 35.660 34.661 

4 14.7868 15.140 13.985 15.078 14.913 15.023 14.979 

5 0.6450 0.645 0.645 0.650 0.646 0.645 0.645 

6 4.6239 4.603 4.710 4.637 4.599 4.621 4.662 

7 24.2375 23.614 25.792 23.893 24.131 23.760 24.034 

8 23.7482 24.209 23.469 24.034 23.751 24.402 23.847 

9 12.5907 12.740 11.585 12.625 12.501 12.439 12.915 

10 13.0012 12.371 13.275 12.543 12.399 12.350 12.521 

Best weight (𝑘𝑔) 530.78 530.77 531.84 530.97 530.75 530.82 530.72 

Average weight (𝑘𝑔) 552.54 538.80 557.09 550.58 541.20 542.79 537.69 

Std. Dev. (𝑘𝑔) 51.61 30.11 60.55 43.87 20.91 30.84 20.38 

No. of analyses 20000 20000 20000 20000 20000 20000 20000 

 
Table 9: Natural frequencies (𝐻𝑧) evaluated at the optimum designs of the 10-bar truss 

Frequency 

number 

Natural frequencies (𝐻𝑧) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 7.0000 7.0000 7.0003 7.0003 7.0000 7.0002 7.0003 

2 16.1515 16.1853 16.1664 16.1920 16.1987 16.1981 16.1756 

3 20.0001 20.0003 20.0343 20.0042 20.0002 20.0004 20.0105 

4 20.0003 20.0036 20.0672 20.0432 20.0009 20.0107 20.0684 

 

 
Figure 2: Convergence histories of the algorithms for the 10-bar planar truss 
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3.2.2 Example 2: the 200-bar planar truss 

Fig. 3 shows the topology and the pattern for node and element numbering of a 200-bar 

planar truss. This is a benchmark problem in the field of weight minimization of truss 

structures with multiple frequency constraints. The cross-sectional area of each of the 

members is considered to be an independent variable. Table 10 summarizes the material 

properties and frequency constraints for this example. Non-structural masses of 100 𝑘𝑔 are 

attached to the upper nodes. A lower bound of 0.1 𝑐𝑚2 is assumed for the cross-sectional 

areas. The elements are divided into 29 groups. This problem has been investigated by 

several researchers, including Kaveh and Zolghadr [5] using a hybridized CSS-BBBC 

algorithm, and Kaveh and Ilchi Ghazaan [12] using two hybridized optimization algorithm.  

 
Table 10: Material properties, variable bounds and frequency constraints of the 200-bar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 210 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  7860 

Added mass / 𝑘𝑔 100 

Lower bound of design variables / 𝑐𝑚2 0.1 

Frequency constraints / 𝐻𝑧 𝜔1 ≥ 5, 𝜔2 ≥ 10, 𝜔3 ≥ 15 

 

 

 
Figure 3: Schematic of the 200-bar planar truss 
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Table 11 lists the optimized designs obtained by the utilized algorithms for the 200-bar 

planar truss. This table illustrates the best optimized weights, average optimized weights and 

standard deviations on optimized weights obtained by the algorithms. The maximum 

number of objective function evaluations is defined as the stopping criteria of the 

algorithms, which is considered equal to 30000 for all algorithms. The optimization results 

show that the algorithms have acceptable performances. A careful examination of Table 11 

reveals that hybridized ABC-TLBO, WEO, ABC, and TLBO have better results in terms of 

the best optimized weight, whereas hybridized ABC-TLBO, VPS, WEO, and CS have better 

results in terms of the average optimized weight. The best optimal results reported by Kaveh 

and Zolghadr [5], and Kaveh and Ilchi Ghazaan [12] are 2298.61 and 2156.73 𝑘𝑔 , 

respectively. Comparing the results obtained by the utilized algorithms (Table 11) with those 

reported by Kaveh and Zolghadr [5] and Kaveh and Ilchi Ghazaan [12] indicated that all of 

the utilized meta-heuristics converge to solutions very close to the best results of other 

researchers, which demonstrates the high performance of these algorithms. Table 12 

represents the natural frequencies of the optimized structures obtained by the algorithms. It 

can be seen that all of the constraints are satisfied. As Table 12 suggests, the values obtained 

by different algorithms for the first and third natural frequencies of the structure are very 

close to their lower bounds, while the values obtained by examined algorithms for the 

second natural frequency are not close its lower bound. This means that the first and third 

natural frequencies of the structure control the design process. Fig. 4 shows the convergence 

histories of the algorithms for the 200-bar planar truss. As Fig. 4 suggests, the convergence 

rates of hybridized ABC-TLBO, VPS, and CS are considerably higher than those of other 

considered meta-heuristics. 

 
Table 11: Comparison of optimal designs found for the 200-bar plane truss (present work)  

Design variable 
Areas (𝑐𝑚2) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 0.3030 0.3096 0.3355 0.3046 0.2989 0.2719 0.3543 

2 0.4599 0.4485 0.4290 0.4725 0.4645 0.5019 0.4761 

3 0.1000 0.1001 0.1000 0.1004 0.1000 0.1000 0.1056 

4 0.1003 0.1000 0.1010 0.1023 0.1000 0.1000 0.1069 

5 0.5386 0.5407 0.4899 0.4940 0.5081 0.5299 0.5668 

6 0.8127 0.8320 0.8337 0.8251 0.8241 0.8245 0.8148 

7 0.1000 0.1000 0.1035 0.1034 0.1012 0.1219 0.1095 

8 1.4111 1.4044 1.4258 1.4575 1.4646 1.3727 1.4216 

9 0.1000 0.1000 0.1000 0.1002 0.1004 0.1000 0.1050 

10 1.6580 1.6083 1.5634 1.5724 1.6046 1.5974 1.7580 

11 1.1720 1.1590 1.1590 1.1597 1.1584 1.1745 1.1603 

12 0.1035 0.1039 0.1511 0.1305 0.1126 0.1667 0.1535 

13 3.0494 2.8872 2.8110 2.8892 3.0006 2.9261 2.8319 

14 0.1030 0.1059 0.1000 0.1144 0.1004 0.1028 0.2705 

15 3.2694 3.1250 3.2470 3.2485 3.2955 3.1685 3.0893 

16 1.5201 1.5775 1.5277 1.5794 1.5629 1.6226 1.5483 

17 0.2808 0.2266 0.3530 0.2415 0.2880 0.2982 0.2832 
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18 5.0808 5.1565 5.2126 5.0382 4.8897 5.0649 5.1530 

19 0.1000 0.1032 0.1168 0.1131 0.1164 0.1022 0.1327 

20 5.4214 5.4625 5.4139 5.4587 5.4388 5.3174 5.1608 

21 2.0794 2.0568 2.0340 2.1107 2.1315 2.1205 1.9811 

22 0.7290 0.7871 0.6283 0.6219 0.8631 0.8556 0.4080 

23 7.6408 7.6738 7.3767 7.4145 7.6361 7.5153 7.9123 

24 0.2149 0.1286 0.1048 0.1117 0.1625 0.1097 0.2117 

25 7.8842 7.8370 8.0048 7.7565 7.6715 7.8672 7.3745 

26 2.7381 2.8117 2.7501 2.7339 2.9449 2.7310 2.6607 

27 10.3701 10.7253 10.5691 10.7550 10.2654 10.6839 10.8293 

28 21.3897 21.5427 21.7397 21.6967 20.7173 20.8942 22.0511 

29 10.9775 10.0024 10.4538 10.2041 11.8240 11.6154 10.7496 

Best weight (𝑘𝑔) 2157.68 2157.79 2158.36 2157.66 2158.48 2159.13 2157.58 

Average weight (𝑘𝑔) 3212.41 3036.06 2983.59 2956.19 2726.60 3291.73 2323.51 

Std. Dev. (𝑘𝑔) 2614.68 2326.90 2970.54 1936.00 2676.39 2109.42 237.17 

No. of analyses 30000 30000 30000 30000 30000 30000 30000 

 
Table 12: Natural frequencies (𝐻𝑧) evaluated at the optimum designs of the 200-bar truss 

Frequency 

number 

Natural frequencies (𝐻𝑧) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 7.0000 7.0000 7.0003 7.0003 7.0000 7.0002 7.0003 

2 16.1515 16.1853 16.1664 16.1920 16.1987 16.1981 16.1756 

3 20.0001 20.0003 20.0343 20.0042 20.0002 20.0004 20.0105 

4 20.0003 20.0036 20.0672 20.0432 20.0009 20.0107 20.0684 

5 28.6121 28.4839 28.0827 28.5563 28.4811 28.4803 28.6063 

 

 
Figure 4: Convergence histories of the algorithms for the 200-bar planar truss 
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3.2.3 Example 3: the 72-bar space truss 

Fig. 5 shows the topology and the pattern for node and element numbering of a 72-bar space 

truss. This is a benchmark problem in the field of weight minimization of truss structures 

with multiple frequency constraints. The cross-sectional area of each of the members is 

considered to be an independent variable. Table 13 summarizes the material properties and 

frequency constraints for this example. Non-structural masses of 2268 𝑘𝑔 are attached to the 

nodes 1-4. The elements are divided into 16 groups. This problem has been investigated by 

several researchers, including Kaveh and Zolghadr [5] using a hybridized CSS-BBBC 

algorithm, Kaveh et al. [10] using DEO, Kaveh and Ilchi Ghazaan [11] using IRO, Kaveh 

and Ilchi Ghazaan [12] using two hybridized optimization algorithm, Kaveh and Ilchi 

Ghazaan [13] using VPS, etc.  

 

 
Figure 5: Schematic of a spatial 72-bar truss 

 
Table 13: Material properties, variable bounds and frequency constraints of the 72-bar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 68.95 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  2767.99 

Added mass / 𝑘𝑔 2268 

Lower bound of design variables / 𝑐𝑚2 0.645 

Upper bound of design variables / 𝑐𝑚2 20 

Frequency constraints / 𝐻𝑧 𝜔1 = 4, 𝜔3 ≥ 6 
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Table 14 lists the optimized designs obtained by the utilized algorithms for the 72-bar 

truss. The table illustrates the best optimized weights, average optimized weights and 

standard deviations on optimized weights obtained by the algorithms. The maximum 

number of objective function evaluations is defined as the stopping criteria of the 

algorithms, which is considered equal to 20000 for all algorithms. A careful examination of 

Table 14 reveals that the algorithms have very close performances in terms of the best 

optimized weight, whereas hybridized ABC-TLBO, CPA, VPS, and CS have better results 

in terms of the average optimized weight and standard deviation on optimized weights. The 

best optimal design results reported by Kaveh and Zolghadr [5], Kaveh et al. [10], Kaveh 

and Ilchi Ghazaan [11], and Kaveh and Ilchi Ghazaan [12], are 327.507, 329.422, 327.597, 

and 327.65 𝑘𝑔 , respectively. Comparing the results obtained by the utilized algorithms 

(Table 14) with the above-mentioned results indicated that all of the utilized algorithms 

converge to solutions very close to the best results of other researchers, which demonstrates 

the high performance of the algorithms. Table 15 represents the natural frequencies of the 

optimized structures obtained by the algorithms. It can be seen that all of the constraints are 

satisfied. As Table 15 suggests, the values obtained by different algorithms for the first and 

third natural frequencies are very close to their lower bounds. This means that the first and 

third natural frequencies control the design process. Fig. 6 shows the convergence histories 

for the 72-bar truss. As Fig. 6 suggests, the convergence rates of hybridized ABC-TLBO, 

VPS, and CPA are higher than those of other considered meta-heuristics. 

 
Table 14: Comparison of optimal designs found for the 72-bar truss (present work)  

Design variable 
Areas (𝑐𝑚2) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 3.4515 3.5750 3.2273 3.4301 3.4626 3.7438 3.4894 

2 7.8096 7.9231 7.7472 7.8474 7.9238 7.8904 7.8887 

3 0.6450 0.6450 0.6450 0.6508 0.6450 0.6450 0.6450 

4 0.6453 0.6451 0.6450 0.6527 0.6450 0.6450 0.6450 

5 8.1568 7.9839 8.4921 8.0996 8.0001 8.6836 7.9435 

6 8.0141 8.0377 8.0895 7.9830 8.0558 8.0373 8.0880 

7 0.6450 0.6450 0.6450 0.6543 0.6459 0.6450 0.6450 

8 0.6451 0.6450 0.6749 0.6502 0.6450 0.6457 0.6450 

9 13.1548 12.8563 12.9831 12.6499 12.8181 12.2459 13.0660 

10 8.0896 7.9735 7.9272 8.0932 8.0162 8.1989 8.1608 

11 0.6453 0.6469 0.6450 0.6587 0.6451 0.6450 0.6450 

12 0.6450 0.6450 0.6476 0.6555 0.6457 0.6450 0.6450 

13 16.9350 17.2664 17.0308 17.5009 17.4008 17.0873 17.2086 

14 8.2091 8.1859 8.3732 8.1990 8.1219 7.9965 7.9835 

15 0.6450 0.6456 0.6450 0.6489 0.6450 0.6450 0.6450 

16 0.6450 0.6453 0.6450 0.6878 0.6450 0.6450 0.6450 

Best weight (𝑘𝑔) 327.63 327.59 327.87 327.86 327.56 327.74 327.53 

Average weight (𝑘𝑔) 348.65 345.95 342.98 352.80 341.43 338.93 339.37 

Std. Dev. (𝑘𝑔) 55.54 56.10 44.31 65.25 42.52 34.60 35.15 

No. of analyses 20000 20000 20000 20000 20000 20000 20000 



OPTIMAL SIZE AND GEOMETRY DESIGN OF TRUSS STRUCTURES UTILIZING … 255 

Table 15: Natural frequencies (𝐻𝑧) evaluated at the optimum designs of the 72-bar truss 

Frequency 

number 

Natural frequencies (𝐻𝑧) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 4.0002 4.0001 4.0003 4.0000 4.0000 4.0000 4.0006 

2 4.0002 4.0001 4.0003 4.0000 4.0000 4.0000 4.0006 

3 6.0000 6.0000 6.0001 6.0002 6.0000 6.0000 6.0000 

4 6.2453 6.2479 6.2502 6.2614 6.2407 6.2696 6.2425 

5 9.0530 9.0804 9.0143 9.0780 9.0668 9.0981 9.0686 

 

 
Figure 6: Convergence histories of the algorithms for the spatial 72-bar truss 

 

3.2.4 Example 4: the 52-bar dome-like truss 

The forth example is 52-bar dome-like space truss, as depicted in Fig. 7. This is a 

simultaneous shape and size optimization problem, where both the cross-sectional area of 

the members and the nodal coordinates are considered as variables. Non-structural masses of 

50 𝑘𝑔 are attached to all free nodes. Material properties, frequency constraints and variable 

bounds for this example are summarized in Table 16. All of the elements of the structure are 

categorized in eight groups according to Table 17. All free nodes are permitted to move in a 

symmetrical manner, they can move ±2 𝑚 in each allowable direction from their initial 

position. Constraints are imposed on the first two natural frequencies. Therefore this is an 

optimization on shape and size with thirteen variables (eight sizing variables and five shape 

variables) and two frequency constraints. This problem has been investigated by several 

researchers, including Lingyun et al. using GA [2], Kaveh and Zolghadr [5] using a 

hybridized CSS-BBBC algorithm, Kaveh and Zolghadr [7] using DPSO, Kaveh and 

Mahdavi [9] using CBO, Kaveh et al. [10] using DEO, Kaveh and Ilchi Ghazaan [11] using 

IRO, Kaveh and Ilchi Ghazaan [12] using two hybridized optimization algorithm, etc. 
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Figure 7: Schematic of the 52-bar dome-like truss 

 
Table 16: Material properties, variable bounds and frequency constraints of the 52-bar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 210 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  7800 

Added mass / 𝑘𝑔 50 

Lower bound of design variables / 𝑐𝑚2 1 

Upper bound of design variables / 𝑐𝑚2 10 

Frequency constraints / 𝐻𝑧 𝜔1 ≤ 15.916, 𝜔2 ≥ 24.648 

 
Table 17: Members grouping of the 52-bar dome-like truss 

Group member Members in the group 

1 1-4 

2 5-8 

3 9-16 

4 17-20 

5 21-28 

6 29-36 

7 37-44 

8 45-52 

 

Table 18 lists the optimized designs obtained by the utilized algorithms for the 52-bar 

truss. This table illustrates the best optimized weights, average optimized weights and 

standard deviations on average optimized weights obtained by the algorithms. The 

maximum number of objective function evaluations is defined as the stopping criteria of the 

algorithms, which is considered equal to 20000 for all algorithms. A careful examination of 
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Table 18 reveals that the algorithms have very close performances in terms of the best 

optimized weight, whereas hybridized ABC-TLBO, CPA, VPS, and TLBO have better 

results in terms of the best optimized weight, average optimized weight and standard 

deviation on optimized weights. The best optimal design results reported by Lingyun et al. 

[2], Kaveh and Zolghadr [5], Kaveh and Zolghadr [7], Kaveh and Mahdavi [9], Kaveh et al. 

[10], Kaveh and Ilchi Ghazaan [11], and Kaveh and Ilchi Ghazaan [12] are 236.0458, 

197.309, 195.351, 197.962, 195.852, 195.38, and 194.85 𝑘𝑔, respectively. It can be seen that 

the best optimized results obtained by the hybridized ABC-TLBO, ABC, TLBO, WEO, 

VPS, and CPA are better than the above-mentioned results, which demonstrates the high 

performance of these algorithms. Table 19 represents the natural frequencies of the 

optimized structures obtained by the algorithms. It can be seen that all of the constraints are 

satisfied. As Table 19 suggests, the values obtained by different algorithms for the second 

natural frequency of the structure is very close to its lower bound, whereas those obtained 

for the first natural frequency of the structure is far from its upper bound. This means that 

the second natural frequency of the structure controls the design process. Fig. 8 shows the 

convergence histories of the algorithms for the 52-bar truss. As Fig. 8 suggests, the 

convergence rates of hybridized ABC-TLBO and TLBO are considerably higher than those 

of other considered meta-heuristics.  

 
Table 18: Comparison of optimal designs found for the 52-bar dome-like truss (present work)  

Design variable 
Areas (𝑐𝑚2) 

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 6.1291 5.9763 5.6633 5.9073 5.9480 5.7209 5.9870 

2 3.8552 3.7000 3.7000 3.7344 3.7235 3.7068 3.8484 

3 2.5000 2.5000 2.5000 2.5044 2.5002 2.5000 2.5000 

4 2.1942 2.3740 2.4461 2.3300 2.2540 2.2475 2.0663 

5 4.0371 4.0191 4.0356 4.0055 3.9709 3.9430 3.9781 

6 1.0000 1.0023 1.0000 1.0109 1.001 1.0000 1.0005 

7 1.1690 1.0771 1.0000 1.0696 1.1683 1.1551 1.2601 

8 1.2406 1.1975 1.1680 1.1748 1.2336 1.2093 1.2622 

9 1.2895 1.4409 1.6634 1.4967 1.4579 1.4560 1.4604 

10 1.4088 1.4147 1.4235 1.3966 1.4104 1.3472 1.4418 

11 1.0000 1.0000 1.0004 1.0062 1.0001 1.0000 1.0000 

12 1.4886 1.4779 1.4493 1.5056 1.4697 1.5240 1.4646 

13 1.4833 1.4794 1.5184 1.4784 1.4748 1.5183 1.4542 

Best weight (𝑘𝑔) 194.08 193.56 195.27 193.97 193.50 193.87 193.34 

Average weight (𝑘𝑔) 266.60 212.14 244.34 281.85 229.48 238.43 206.92 

Std. Dev. (𝑘𝑔) 160.23 73.76 118.64 145.22 93.06 118.33 44.86 

No. of analyses 20000 20000 20000 20000 20000 20000 20000 
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Table 19: Natural frequencies (𝐻𝑧) evaluated at the optimum designs of the 52-bar truss 

Frequency 

number 

Natural frequencies (𝐻𝑧)  

ABC TLBO CS WEO VPS CPA ABC-TLBO 

1 11.1726 12.0940 13.9785 12.1631 11.5153 12.1183 10.5787 

2 28.6480 28.6480 28.6525 28.6508 28.6480 28.6480 28.6486 

3 28.6484 28.6481 28.6591 28.6526 28.6484 28.6488 28.6490 

4 28.6484 28.6487 28.7887 28.6688 28.6506 28.6507 28.6581 

 

 
Figure 8: Convergence histories of the algorithms for the 52-bar dome-like truss 

 

 

4. CONCLUSION 
 

This study examined seven population-based meta-heuristics in the context of 

simultaneously size and geometry optimization of truss structures and investigated their 

performances. The objective of optimization was to minimize the weight of truss 

structures subject to multiple natural frequency constraints. The candidate solutions were 

encoded by a vector of real values. A simple penalizing strategy was utilized to handle 

constraints of the problem. The investigated meta-heuristics were Artificial Bee Colony, 

Cyclical Parthenogenesis Algorithm, Cuckoo Search, Teaching-Learning-Based 

Optimization, Vibrating Particles System, Water Evaporation Optimization algorithms 

and a hybridized ABC-TLBO algorithm. The algorithms were tuned with Taguchi 

method. In order to illustrate the capability and efficiency of the utilized meta-heuristics, 

the algorithms were applied to continuous size and geometry optimization of four 

benchmark truss structures. The optimization results indicate that the utilized algorithms 

have efficient performances for the simultaneously size and geometry optimization of 

truss structures with continuous design variables. The optimization results indicates that 
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the hybridized ABC-TLBO, TLBO, VPS, and CPA algorithms have better performances 

in terms of the best optimized weights, average optimized weights, and standard 

deviation on optimized weights.  
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