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ABSTRACT 
 

The present study addresses optimal design of reinforced concrete (RC) columns based on 

equivalent equations considering deformability regulations of ACI318-14 under axial force 

and uniaxial bending moment. This study contrary to common approaches working with trial 

and error approach in design, at first presents an exact solution for intensity of longitudinal 

reinforcement in column section by solving equivalent equation. Then, longitudinal and 

transverse reinforcement details are assessed regarding the previous step results and where 

achieving the lowest steel consumption design in the column is selected as the optimum. In 

addition to optimizing column cross-section dimension by implementing single-variable 

optimization methods, the effect of axial force, bending moment and concrete compressive 

strength variations on the column cross-section dimension, intensity of longitudinal 

reinforcement, construction costs and total weight of consumption steel have been 

investigated. The investigation on the validity of the proposed method was assessed and 

signified through comparison with the existed work in the literature. Finding an exact 

solution considering all regulations and constraints is the advantage of this method in 

determining optimized RC column. 
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1. INTRODUCTION 
 

A set of assumptions are generally taken into account in concrete structural design. Design 

codes such as ACI318, have common design assumptions for concrete members similar to 

beams, columns and RC slabs, but follow different design approaches [1]. As RC beams just 

                                                   
*Corresponding author: Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran 
†E-mail address: Ghohani@eng.usb.ac.ir (H. Ghohani Arab) 



A. Bolideh, H. Ghohani Arab and M. R. Ghasemi 

 

690 

carry bending moments, the intensity of steel required for reinforcing concrete is easily 

calculated, implementing algebraic equations [2]. But in RC columns design, the 

simultaneous effect of subjected axial load and bending moment should be taken into 

account. Simultaneous effect of axial load and bending moment makes different design 

conditions and presents different methods to find the required area of longitudinal 

reinforcement. P-M interaction curves were considered as a powerful tool in columns design 

after being introduced by Whitney and Cohen in 1956 [3]. This methodology is based on the 

solution of equilibrium equations over the column cross section with specific reinforcement 

details [4]. So, the optimum design is when the point illustrating axial load and bending 

moment over the cross-section is located inside the zone surrounded by M=0, P=0 axes and 

interaction curve [5]. Introducing P-M interaction curves has made design of RC columns 

much easier [6]. However, common methods used for designing columns require repetitive 

procedures as trial and error to find suitable reinforcement over a column section under 

applied loads [7]. 

Repetitive procedures can find responses meeting all limits, but complexity of design 

conditions for a reinforced concrete column with a large number of responses makes 

determination of the optimal response highly time and cost consuming [8]. Optimization 

methods based on gradient and metaheuristic algorithms [9-12] are usage applications to 

find the optimum design in RC structures. [13-17]. Adamu and Karihaloo [18] optimized 

columns subjected to uniaxial bending, reinforced in parallel sides based on DCOC, a 

suggested method implementing Lagrngian equations. De Medeiros and Kripka [19] 

optimized a column cross-section and its longitudinal reinforcement based on metaheuristic 

harmony search algorithm under the effects of environmental parameters They investigated 

section strength under loading with the help of interaction curve. Sánchez-Olivares and 

Tomás [20] optimized column cross-section and longitudinal reinforcement under biaxial 

bending using optimized firefly metaheuristic algorithm. Gharehbaghi and Fadaee [21] 

implemented PSO algorithm to optimize column longitudinal rebar dimensions and cross-

section in reinforced concrete frame under seismic loads. Also, Gholizadeh and 

Aligholizadeh [22] and Gheyratmand et al. [23] optimized columns in RC frame by 

metaheuristic algorithms and based on a database for column sections and longitudinal 

reinforcement. 

Contrary to metaheuristic algorithms, some of the studies have been looking for an exact 

solution for longitudinal reinforcement cross-section of every column section using 

assumptions and equations. Aschheim et al. [2] studied optimization of intensity of 

longitudinal reinforcement of RC columns subjected to uniaxial bending based on European 

concrete standard and by creating domains based on specific points in interaction curve. Lee 

et al. [7] optimized longitudinal reinforcement for columns with plane reinforcement in 

parallel sides, axial bending and different load combinations using Reinforcement Sizing 

Diagrams (RSD) and mathematical methodologies. Aschheim et al. [24] solved equilibrium 

equations for a column with rectangular section to optimize longitudinal reinforcement in a 

section with discrete reinforcement in the cross section using discrete values for diameter of 

rebar under biaxial bending. Aschheim et al. [1] carried similar studies but in 2 or 4 sides of 

the column section, using sequential search nonlinear methods. In the latter research, 

required rebar discretization is conducted based on stress distribution in each side of column 

section, beam or concrete walls. 
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In present study, required intensity of longitudinal reinforcement in square section under 

uniaxial bending and axial load is determined by creating domains based on sectioning the 

height of neutral axis in column section. In this method, an exact solution is obtained by 

solving equivalent equations based on mathematical theory, for the necessary reinforcement 

area for each section of column. As most columns are utilized with axisymmetric 

reinforcement in all four sides in construction, reinforcement is considered as steel plates 

with constant thickness and discretization is carried based on a list catalog. All possible 

states of longitudinal and transverse reinforcement were accounted for as in a catalog list, 

regarding all intermediate deformability conditions and regulations for columns, and the one 

with least amount of consumption steel in column is selected as optimum choice for column. 

In this study, the optimization problem is divided into two parts for optimizing column 

dimension based on the lowest construction cost and optimizing the pattern of longitudinal 

and transverse rebar in a specific dimension. The square column dimension is the only 

parameter for optimization problem. Single variable optimization algorithm of Golden 

Section Search Method [25] is implemented to find the best response for column dimension 

under uniaxial bending and axial load. Target function is composed of concrete, steel and 

formwork costs. Steel costs in target function includes longitudinal and transverse rebar in 

the column. Effects of axial load, bending moment and concrete characteristic compressive 

strength are investigated based on column design parameters such as column dimension, 

longitudinal rebar cross-section, construction cost and total weight of consumed steel. 

 

 

2. DESIGN ASSUMPTIONS 
 

Design of the column cross-section is conducted based on ACI318−14 code. Assumptions 

are indicated in a free body diagram as shown in Fig. 1. In case of a compressive force, it is 

presumed positive and the applied moment is positive if cross-section’s upper layer is under 

compression. Also, steel plates are utilized as reinforcement in column cross-section as in 

Fig. 1, with a constant thickness t in all four sides. 

 

 
Figure 1. Free body diagram of column cross-section 

 

In Fig. 1, b is the column breadth, c′ is the concrete cover depth in two directions, εt is 

the strain in the farthest tensile row in column cross-section, c is neutral axis height, fc
′ is the 

concrete compressive strength and β1 is the height coefficient of equivalent rectangular 
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compressive stress block over the section. According to ACI (22-2-2-4), to estimate real 

concrete compressive stress distribution in final failure moment properly, stress distribution 

is assumed as Whitney rectangular stress distribution of 0.85fc
′ intensity[3]. The height of 

rectangular compressive stress block is calculated as a = β1c. β1, and height coefficient of 

equivalent rectangular compressive stress block is calculated based on Equation (1). 

 
𝛽1 = 0.85 17 ≤ 𝑓𝑐

′(𝑀𝑃𝑎) ≤ 28 

(1) 𝛽1 = 0.85 − 0.00714(𝑓𝑐
′ − 28) 28 ≤ 𝑓𝑐

′(𝑀𝑃𝑎) < 55 

𝛽1 = 0.65 𝑓𝑐
′(𝑀𝑃𝑎) ≥ 55 

 

To calculate axial load and corresponding moment, steel behavior is assumed 

elastoplastic. So tensile or compressive stress in steel is calculated by multiplying elasticity 

modulus by steel strain in elastic zone and stress in steel rebar is equal to yield stress in 

plastic zone. Strain is assumed positive when it is compressive and vice versa. With this 

approach the best possible states for the consumed steel stress and strain are obtained and 

the number of unknowns demotes. 

As cross-section is subjected to axial load and uniaxial bending, steel plates in side 

sections will have a totally different conditions comparing to upper and lower sides. Under 

predefined loading conditions as indicated in Fig. 1. some parts of lateral sides may act in 

elastic zone and other parts in plastic. Therefore, calculating strain in any height of the 

section can determine elastic or plastic behavior of that part. According to strength-based 

design mentioned in ACI318-14, equilibrium conditions must be applied in each section. 𝐶𝑐 

, 𝐶𝑠 and 𝑇𝑠 are the loads carried by concrete, compressive steel and tensile steel, respectively. 

𝐶𝑐 is calculated from Equation (2): 

 

 𝑖𝑓 𝑐 > 𝑏
𝛽1

⁄    ; 𝑎 = 𝑏     ,         𝐶𝑐 = 0.85𝑓𝑐
′𝑏2 

(2) 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        ; 𝑎 = 𝛽1𝑐 ,         𝐶𝑐 = 0.85𝑓𝑐

′𝑎𝑏 
 

If axial load is much larger than moment, neutral axis height increases. If it goes up more 

than 𝑏
𝛽1

⁄ , all concrete will be subjected to compressive stress and height of Whitney 

rectangular stress block will be limited to b. 

Compressive and tensile forces in upper and lower planes are calculated by multiplying 

stress in each part of the steel plate by its corresponding cross-section. To simplify and reduce 

the equilibrium equations, reduction in concrete cross-section under compressive stress has 

been ignored. Because steel plates have very negligible thickness, this will not have any effect 

on final results. Stress in upper and lower planes are calculated by Equation (3): 

 
𝐶𝑠,𝑖 = 𝑓𝑠,𝑖

′ 𝐴𝑠,𝑖     ;    𝐴𝑠,𝑖 = 𝑡(𝑏 − 2𝑑′)  , 𝑖 = 𝑇𝑜𝑝 𝑜𝑟 𝐵𝑜𝑡𝑡𝑜𝑚 𝑃𝑙𝑎𝑡𝑒 
(3) 

 𝑇𝑠,𝑖 = 𝑓𝑠,𝑖𝐴𝑠,𝑖     ;    𝐴𝑠,𝑖 = 𝑡(𝑏 − 2𝑑′)  , 𝑖 = 𝑇𝑜𝑝 𝑜𝑟 𝐵𝑜𝑡𝑡𝑜𝑚 𝑃𝑙𝑎𝑡𝑒 

 

 𝐴𝑠 is area of steel plate cross-section, 𝑓𝑠 is steel plate tensile stress, 𝑓𝑠
′ is steel plate 

compressive stress, t is steel plate thickness, b is section width and 𝑑′is the distance of upper 

steel plate center from the farthest tensile row. According to ACI (22-2-2-1), maximum 

strain in the farthest tensile row is assumed 0.003. Using Bernoulli principle assuming that 

planes keep their plate shape after deformation and considering strain in the farthest tensile 
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row, strain is determined in every height of the section. So, 𝑓𝑠 and 𝑓𝑠
′ are determined from 

Equations (4) and (5) assuming elastoplastic behavior for steel. 

 
𝑓𝑠

′ = 𝐸𝑠𝜀𝑠
′ = 𝐸𝑠(0.003(1 − ℎ𝑖 𝑐⁄ )) 𝐼𝑓              𝜀𝑠

′ ≤ 𝑓𝑦 𝐸𝑠⁄  
(4) 

𝑓𝑠
′ = 𝑓𝑦 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑓𝑠 = 𝐸𝑠𝜀𝑠 = 𝐸𝑠(0.003(ℎ𝑖 𝑐 − 1⁄ )) 𝐼𝑓              𝜀𝑠 ≤ 𝑓𝑦 𝐸𝑠⁄  
(5) 

𝑓𝑠 = 𝑓𝑦 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝑓𝑦 is the steel yield stress, 𝐸𝑠 is steel elasticity modulus, 𝜀𝑠
′ is compressive strain, 𝜀𝑠 is 

tensile strain and ℎ𝑖 is the steel section height from the farthest tensile row. For steel plates 

in lateral sides of the reinforced concrete column section, axial load and bending moment 

are calculated by integrating part of the area under stress-moment curve resulted from stress 

around section’s plastic axis. As section is symmetric, plastic axis height is 𝑏
2⁄ . Based on 

equilibrium equations, axial load and bending moment are functions of strength reduction 

factor ∅, steel plate thickness t and neutral axis height c. In this state the number of 

unknowns is more than that of equilibrium equations and problem has one degree of 

freedom. Equilibrium equations are stated as Equations (6) and (7). 

 

(6) 
𝑃𝑢

∅⁄ = 𝑃𝑛 = ∑ 𝑃(𝑡, 𝑐, ∅) =

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

0.85𝑓𝑐
′𝑎𝑏 + ∫ 𝑓𝑠𝑑𝐴𝑠 + ∫ 𝑓𝑠

′𝑑𝐴𝑠
′  

(7) 
𝑀𝑢

∅⁄ = 𝑀𝑛 = ∑ 𝑀 (𝑡, 𝑐, ∅) = 0.85𝑓𝑐
′𝑎𝑏(𝑏

2⁄ − 𝑎
2⁄ ) + ∫ 𝑓𝑠𝑦𝑑𝐴𝑠 + ∫ 𝑓𝑠

′𝑦𝑑𝐴𝑠
′

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

 

 

where 𝑃𝑢 and 𝑀𝑢 are axial load and resulting uniaxial bending moment of different load 

combinations on the cross-section, respectively. Also 𝑃𝑛 and 𝑀𝑛 are nominal axial load and 

bending moment subjected to the section, respectively, calculated by dividing the values 

obtained from analysis by defined reduction factors from standards.  

In order to minimize the unknowns and implementing algebraic methods, equilibrium 

equations should be solved by determining different domains for neutral axis height in the 

column cross-section. If neutral axis height is in allowable limit of the domain, it is selected as 

an acceptable response. According to ACI (21-2-2) and considering strain in the farthest 

tensile row over the section, strength reduction factor ∅ is variable and so the section can be 

compression-controlled, tension-controlled and in transition zone. Domains are classified 

based on the neutral axis height and strength reduction factor ∅. Application of strength 

reduction factor in classification of domains has demoted the number of unknowns and 

reduced the number of degree of freedoms to zero. Therefore, the problem is easily solved by 

algebraic methods. This classification can be easily calculated and used for different yield 

strengths. Table1 indicates the neutral axis height domain for yield strengths of 400-420 MPa. 

In neutral axis height domain, the section is under large axial load and low bending 

moments in domain No.1. Then, axial load diminishes and uniaxial bending moment 

promotes. Also the section enters transition zone from compression-controlled and finally 

enters tension-controlled zone in domains No.1 to 11. Strength reduction factors in each 

domain also are shown in Table 1. Based on the effective dimensions in the section and the 
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breadth of the column, different conditions can come up in upper and lower limits of neutral 

axis height which are also shown in Table 1. 

 
Table 1: Neutral axis division for steel with yield strength in the range of 400-420 MPa 

∅ 
Upper Bound of 

Neutral Axis 

Lower Bound of 

Neutral Axis 
Situation 

Domain 

No. 

0.65 -------- 
𝐸𝑠𝜀𝑐𝑢𝑑

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  -------- 1 

0.65 
𝐸𝑠𝜀𝑐𝑢𝑑

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  -------- 2 

0.65 
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  𝑏
𝛽1

⁄  -------- 3 

0.65 𝑏
𝛽1

⁄  𝑑 -------- 4 

0.65 𝑑 
𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  𝑏 < 𝐴∗ 
5 

0.65 𝑑 
𝐸𝑠𝜀𝑐𝑢𝑑

(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏 ≥ 𝐴∗ 

0.65 
𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  𝑏
2⁄  𝑏 < 𝐴∗ 

6 0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝐸𝑠𝜀𝑐𝑢𝑑
(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏

2⁄  𝑏 ≥ 𝐴∗ 

0.65 𝑏
2⁄  

𝐸𝑠𝜀𝑐𝑢𝑑
(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏 < 𝐴∗ 

7 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝑏
2⁄  

𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  
𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 < 𝐶∗ 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝑏
2⁄  

𝜀𝑐𝑢𝑑
(𝜀𝑐𝑢 + 𝜀𝑦)⁄  

𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 ≥ 𝐶∗ 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝑏
2⁄  

𝜀𝑐𝑢𝑑
(𝜀𝑐𝑢 + 𝜀𝑦)⁄  𝑏 ≥ 𝐴∗ & 𝑏 ≥ 𝐵∗  

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝐸𝑠𝜀𝑐𝑢𝑑
(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  

𝐸𝑠𝜀𝑐𝑢𝑏
2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏 < 𝐴∗& 𝑏 > 𝐷∗ 

8 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝐸𝑠𝜀𝑐𝑢𝑑
(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  

𝜀𝑐𝑢𝑑
(𝜀𝑐𝑢 + 𝜀𝑦)⁄  𝑏 < 𝐴∗ & 𝑏 ≤ 𝐷∗ 

 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  
𝜀𝑐𝑢𝑑

(𝜀𝑐𝑢 + 𝜀𝑦)⁄  
𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 < 𝐶∗ 

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝜀𝑐𝑢𝑑
(𝜀𝑐𝑢 + 𝜀𝑦)⁄  

𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  
𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 ≥ 𝐶∗ 

0.9 
𝜀𝑐𝑢𝑑

(𝜀𝑐𝑢 + 𝜀𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏 ≥ 𝐴∗ & 𝑏 ≥ 𝐵∗  

0.233

+ 0.25(𝑑
𝑐⁄ ) 

𝐸𝑠𝜀𝑐𝑢𝑏
2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  

𝜀𝑐𝑢𝑑
(𝜀𝑐𝑢 + 𝜀𝑦)⁄  𝑏 < 𝐴∗& 𝑏 > 𝐷∗ 

9 0.9 
𝜀𝑐𝑢𝑑

(𝜀𝑐𝑢 + 𝜀𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  𝑏 < 𝐴∗ & 𝑏 ≤ 𝐷∗ 

0.9 
𝜀𝑐𝑢𝑑

(𝜀𝑐𝑢 + 𝜀𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  
𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 < 𝐶∗ 
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0.9 
𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  
𝑏 ≥ 𝐴∗ & 𝑏
< 𝐵∗ & 𝑑 ≥ 𝐶∗ 

0.9 
𝐸𝑠𝜀𝑐𝑢𝑏

2(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)⁄  
𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄  𝑏 ≥ 𝐴∗ & 𝑏 ≥ 𝐵∗  

0.9 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝐷𝑜𝑚𝑎𝑖𝑛 9 𝑑′ -------- 10 

0.9 𝑑′ 0 -------- 11 

𝐵∗ = 2𝑑′ (
(𝐸𝑠𝜀𝑐𝑢 + 𝑓𝑦)

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄ ) 𝐴∗ = 2 (
𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄ ) 

𝐷∗ = (3
4⁄ )𝑑(1 + (

𝑓𝑦
𝐸𝑠𝜀𝑐𝑢

⁄ )) 𝐶∗ = (8
3⁄ ) (

𝐸𝑠𝜀𝑐𝑢𝑑′

(𝐸𝑠𝜀𝑐𝑢 − 𝑓𝑦)⁄ ) 

 

where d is the neutral axis height, and 𝜀𝑐𝑢 is the maximum strain in concrete. It should be 

mentioned that if we face a set of possible responses in different domains, the one with the 

least steel consumed for longitudinal rebar is selected. 

 

 

3. DISCRETIZATION OF DESIGN STEEL 
 

In order to provide executable responses from solving equations given in the previous steps, 

discretization process must take place. This is done by discretizing longitudinal rebar. Fig. 2 

Presents the longitudinal and transverse rebar discretization. 

 

 
Figure 2. Longitudinal and transverse rebar discretization 

 

3.1 Longitudinal reinforcement 

A set of possible states based on the number of longitudinal reinforcement with specific 

diameter which are consistent with the section dimensions are generated. These states are 

generated based on net spacing between longitudinal rebar and if they meet the 

requirements, they will be introduced as potential responses. 

 

3.1.1 Longitudinal reinforcement constraints 

1. According to ACI (10-6-1-1), longitudinal reinforcement cross-section in column must 

have a minimum value of 0.01𝐴𝑔 and a maximum value of 0.08𝐴𝑔 where 𝐴𝑔 is the gross 

area of column cross-section. Longitudinal reinforcement placement should have larger area 

than the one calculated in previous step. 
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2. According to ACI (25-2-3), minimum spacing between longitudinal rebar is calculated 

as follows: 

 

 

where 𝑆𝑚𝑖𝑛 is the minimum net spacing of longitudinal rebar, 𝑑𝑏 is the longitudinal rebar 

diameter and 𝑑𝑎𝑔𝑔 is the largest concrete aggregate diameter. 

3. According to ACI (10-7-3-1), minimum number of longitudinal reinforcement in a 

column with rectangular cross-section is 4. 

4. To investigate all possible states of longitudinal reinforcement, longitudinal rebar 

diameters are assumed: 

 
Longitudinal Rebar Dimension (mm): 12, 14, 16, 18, 19, 20, 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40  
 

3.2 Transverse rebar 

As intermediate formability is addressed, related constraints should be taken into account in 

determination of transverse rebar. Nominal shear strength of the reinforced concrete beam is 

defined based on ACI (22-5-1-1). 

 

where 𝑉𝑛 is nominal shear strength of section, 𝑉𝑐 is concrete nominal shear strength, 𝑉𝑠 is 

transverse rebar nominal shear strength. According to ACI (22-5-6-1), Equation (10) is used 

to determine concrete nominal shear strength in this study. 

 

(10) 𝑉𝑐 = 0.17(1 +
𝑃𝑢

14𝐴𝑔

)√𝑓𝑐
′𝑏𝑑 

 

Nominal shear strength of standing transverse rebar is calculated based on ACI (22-5-10-

5-3) by using Equation (11). 

 

(11)  Vs =
Avfytd

Sv

 

 

In Equation (11), 𝐴𝑣 is transverse rebar cross-section, 𝑓𝑦𝑡 is transverse rebar yield 

strength and 𝑆𝑣 is center-to-center distance of transverse rebar in column central area. As 

column design with intermediate formability is addressed, according to ACI (18-4-3-1) 

design shear force should equate the minimum value of two following limits: 

1. The shear associated with development of nominal moment strengths of the column at 

each restrained end of the unsupported length due to reverse curvature bending.  

2. Maximum shear obtained from factored load combinations including earthquake where 

0𝐸 is replaced with E. 0 is over strength factor which is 3 for intermediate frames. 

 

(8) 𝑆𝑚𝑖𝑛 = {1.5𝑑𝑏 , 40 𝑚𝑚 , (4
3⁄ )𝑑𝑎𝑔𝑔} 

(9) 𝑉𝑛 = (𝑉𝑐 + 𝑉𝑠) 
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3.2.1 Transverse reinforcement constraints 

1. According to ACI (10-5-1-1), design shear strength should be larger than calculated shear 

strength in that point. 

 

(12) ∅𝑉𝑛 ≥ 𝑉𝑢 
 

where 𝑉𝑛 is nominal shear strength, 𝑉𝑢 is analyzed shear strength and ∅ is shear strength 

reduction factor equal to 0.75 based on ACI (21-2). 

2. According to ACI (18-4-3-3), transverse rebar should be placed along the length 𝐿0 

with a spacing of 𝑆0. 

 

(13) 𝑆0,𝑚𝑎𝑥 = 𝑚𝑖𝑛 {(𝑏
2⁄ ), 8Ф𝐿 , 24Ф𝑇 , 300 𝑚𝑚, 𝑆𝑣} 

(14) 𝐿0,𝑚𝑎𝑥 = 𝑚𝑖𝑛 {𝑏 ,
𝐿𝑛

6⁄  , 450 𝑚𝑚} 

 

 𝑆0,𝑚𝑎𝑥 is the maximum spacing of transverse rebar in length 𝐿0, Ф𝐿 is the longitudinal 

rebar diameter, Ф𝑇  is transverse rebar diameter, 𝐿𝑛 is column net height and 𝐿0,𝑚𝑎𝑥 is the 

maximum allowable length 𝐿0 in column upper and lower surfaces. 

3. According to ACI (18-4-3-4), the first transverse rebar spacing should not exceed 
S0 

2⁄ . 

4. According to ACI (10-6-2-2), ratio of transverse rebar area to center-to-center distance 

of transverse rebar must be higher than the minimum value defined in the standards. 

 

(15) 

(
𝐴𝑣

𝑆𝑣

)𝑟𝑒𝑞 ≥ (
𝐴𝑣

𝑆𝑣

)𝑚𝑖𝑛,𝑎𝑙𝑙  

(
𝐴𝑣

𝑆𝑣

)𝑚𝑖𝑛,𝑎𝑙𝑙 = 𝑚𝑎𝑥 {0.062√𝑓𝑐
′

𝑏

𝑓𝑦

 , 0.35
𝑏

𝑓𝑦

} 

 

5. According to ACI (22-5-1-2), section dimensions should be selected to meet following 

condition: 

 

(16) 𝑉𝑢 ≤ ∅(𝑉𝑐 + 0.66√𝑓𝑐
′𝑏𝑑) 

(17) 
𝐼𝑓  𝑉𝑠 ≥ 2𝑉𝑐                               ;          𝑆𝑣 ≤ 𝑚𝑖𝑛{300 𝑚𝑚 , 𝑑

4⁄ } 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 ;        𝑆𝑣 ≤ 𝑚𝑖𝑛{600 𝑚𝑚 , 𝑑
2⁄ } 

 

6. According to ACI (10-7-6-5-2), transverse rebar spacing Sv should be less than the 

maximum value mentioned in the standards. This ratio is: 

7. According to ACI (25-7-2-2), minimum transverse rebar diameter for No.32 

longitudinal rebar and less is No.10 rebar and for No.36 longitudinal rebar and more is 
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No.13 rebar. 

8. According to ACI (25-7-2-3), stirrups should be placed such that each longitudinal 

rebar located in the corner and every other one with respect to corner longitudinal rebar have 

adequate lateral bracing with stirrup corner of maximum 135-degrees angle. Spacing of two 

braced longitudinal rebar should not exceed 150 mm. 

As longitudinal rebar diameter affects transverse rebar spacing in two initial and terminal 

zones and subsequently final weight of consumed steel, the number of closed stirrups, 

intersecting stirrups, spacing S0, length L0 and steel consumption volume are calculated 

simultaneously for all longitudinal rebar layouts. The pattern with the lowest consumed 

weight is selected as the optimal response. 

 

 

4. OBJECTIVE FUNCTION 
 

This study addresses designing a square cross-section column which is a part of intermediate 

moment frame to reduce construction costs. Target function consists of consumed concrete, 

consumed steel and formwork costs. All constraints mentioned in section 3 are taken into 

account in the calculation of objective function. Cost function is obtained from Equation (18). 

 

(18) 𝐹(𝑥) = 𝑏2𝐿𝑛𝐶𝑐𝑜𝑛 + 4𝑏𝐿𝑛𝐶𝑓 + 𝛾𝑠𝑉𝑠𝑡𝐶𝑠𝑡 

 

where 𝐿𝑛 is net column height, Ccon is concrete consumption unit cost, 𝐶𝑓 is formwork unit 

cost, 𝛾𝑠 is steel consumption specific weight, 𝑉𝑠𝑡 is steel consumption volume and 𝐶𝑠𝑡 is 

steel consumption unit cost in designed column. 
 

 

5. OPTIMIZATION ALGORITHM 
 

In this study, optimization procedure is carried out in two steps; optimizing column square 

cross-section and optimizing longitudinal and transverse reinforcement in a specific column 

section and height. So, a single-variable problem is solved in the first step using single-

variable algorithms like Golden Section Search Method. This algorithm is commonly used 

for unconstrained problems with only one optimal point in [𝑎, 𝑏]. Where a and b are lower 

and upper limit of response domain. Golden Section Search Method is inspired from 

Fibonacci search method and based on a golden ratio for search in response domain. This 

golden ratio is defined as 
√5−1

2
 [25].  

 

 

6. DESIGN EXAMPLES 
 

6.1 Calculating column longitudinal rebar under axial load and uniaxial bending moment 

In order to be able to verify the proposed method given here, and also to find exact required 



OPTIMAL DESIGN OF COLUMNS FOR AN INTERMEDIATE MOMENT FRAME ... 

 

699 

longitudinal rebar in column section implementing algebraic equations, different values are 

assumed for axial load and bending moment according to the book appendix of [27] and the 

results are compared with the related design curves. Some of the studied points and 

dimensions in this research, mechanical properties details and results of required 

longitudinal rebar calculation are indicated in Table 2. Moreover, a design problem from 

Mc. CORMAC and BROWN’s book [26] has been assessed to clarify the proposed 

technique. 

Required longitudinal rebar cross-section is calculated for a short column in this problem. 

According to [26] required rebar fraction is 0.023 in column section. The consumed rebar 

fraction will be 0.022 based on the calculations. This fraction for column section verifies the 

consistency of the suggested method response with the one in [26]. Also, 4.35 % reduction 

in required steel rebar is observed in this study compared to the mentioned reference. 
 

Table 2: Results of required longitudinal rebar calculation 

Results of Present Study  Loading  
Mechanical 

Specification 
 

Width 

(mm) 
Ref 

ρ 
T 

(mm) 
c  

(mm) 
Target 

Domain 
 

Mu 
 (kN. m) 

Pu  
(kN) 

 
fy  

(MPa) 

fc
′  

(MPa) 
 

0.022 3.319 389.86 4  1084.6 2668.8  413.68 34.47  406.4 [26]* 

0.045 6.024 232.55 5  146.31 2229.5  420 35  300 [27] 

0.015 2.14 401.34 4  15.60 2229.5  420 28  350 [27] 

0.024 3.88 356.54 5  186.58 2211.3  400 21  450 [27] 

0.019 3.306 138.64 10  531.49 851.76  410 35  520 [27] 

0.037 7.07 223.65 7  2268 1360  400 42  600 [27] 

0.038 9.69 267.13 8  2731 1820  420 28  850 [27] 

0.057 15.30 1130.54 3  735.86 19195.2  400 21  920 [27] 

0.0778 21.41 308.19 8  9500 1000  410 35  950 [27] 

0.397 12.4 560.12 6  7267.3 8808.8  420 28  1100 [27] 

 concrete cover is considered 1.5 in (38.1 mm). 

 

6.2 Designing an intermediate column subjected to axial load and uniaxial bending moment 

Here, a column subject to axial load and uniaxial bending moment is assumed from SP-

17(14) handbook of Concrete Institute of America [17]. This column is part of an 

intermediate moment frame and the goal is to assess the suggested method. Details of 

material properties and resulting forces are shown in Table 3. 

The concrete cover is 1.5 𝑖𝑛 and area is 24 × 24 𝑖𝑛. As longitudinal rebar cross-section has 

not increased in joints, the maximum allowable rebar has been limited to 0.04𝐴𝑔. In this 

step, optimal design of rebar details is done based on specific column cross-section 

 
Table 3: Second problem details 

Materials and Details [17] 

60         ksi Specified Yield Strength,fy 

29000   ksi Modulus of Elasticity of Steel, Es 
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5           ksi Specified Concrete Compressive Strength , fc
′ 

4030     ksi Modulus of Elasticity of Concrete, Ec 
186       in Net Length of the column 

30         in Length of Roof 

Loading[17] 

Vu(kip) Mu(kip. in) Pu(kip) Load Combinations 

0 0 890 (i)   U= 1.2D + 1.6L+ 0.5S 

5 651 800 (ii)  U= 1.2D +1.0W + 1.0L+0.5S 

18 2401 818 (iii) U= 1.2D+1.0E+1.0L+0.2S 

18 2401 486 (iv) U= 0.9D+1.0E+1.0L+0.2S 

 

As column is part of an intermediate moment frame, the constraints mentioned in section 

3.2. are applied to calculate the maximum shear in column.  

 

 

 
Figure 3a. Section details of present research 

 
Figure 3c. Details of transverse based on 

section width from [17]  
Figure 3b. Section details of reference [17] 

Figure 3. Design results based on section width from [17] 

 

Load combinations used for analysis in Ref. [17] are shown in Table 3. Load 

combinations include earthquake are, combination (iii) and (iv). For maximum axial load 

and bending moment from load combinations of Table 3 and based on defined equilibrium 

equations, neutral axis is located in domain 5 in Table 1 and its height is 19.67 𝑖𝑛. Steel 

plate thickness is obtained −0.108 𝑖𝑛 after solving equilibrium equations in domain 5 
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considering mentioned neutral axis height. Regarding negative thickness calculated, it is 

observed that the column with mentioned cross-section does not require additional 

longitudinal rebar and concrete is able to carry total load. So, minimum longitudinal rebar is 

0.01𝐴𝑔 based on the standards.  

There are 64 possible states for longitudinal rebar placement in column section based on 

longitudinal rebar diameter, minimum allowable spacing between longitudinal rebar and 

concrete cover. Longitudinal and transverse rebar results in this study and the results from 

[17] are shown in Fig. 3a-3b. Transverse rebar details in section one are shown in Fig. 3c. 

Transverse rebar spacing is rounded off to multiplications of 5mm because of constructional 

structure. Steel specific weight is 78.5 (𝑘𝑁/𝑚3). Consumes steel weight is calculated 

1.499 𝑘𝑁 considering dowel rebar length and roof height, while consumed steel weight is 

1.984 𝑘𝑁 in [17]. The proposed method indicates 24% reduction in consumed steel weight. 

Points of axial load and bending moment are shown in interaction curve in Fig. 4. As 

transverse rebar diameter directly affects spacing and longitudinal rebar diameter, the 

proposed method can obtain the minimum consumed steel weight under the stated 

conditions. 

In the next step column section cost is optimized by Golden Section Search Method [25]. 

Column section dimension is considered as a design variable in mentioned algorithm and is 

selected based on applied loads. Concrete, steel and formwork unit cost are respectively 

100(𝑈𝑆𝐷/𝑚3), 87(𝑈𝑆𝐷/𝑘𝑁) and 5(𝑈𝑆𝐷/𝑚2).  

 

 
Figure 4. Points of applied loads for the section in [17] in interaction curve 

 

Column section dimension is 300-1500 mm with 5 mm step. Optimal design details of 

dimension and reinforcement are shown in Fig. 5. Points of applied loads optimized with 

section dimensions different from [17] and implementation of Golden Section Search 

method are shown in interaction curve in Fig. 6. 
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Figure 5b. Optimal response transverse rebar 

spacing details  Figure 5a. Optimal response section details 

Figure 5. Optimal design details for Golden Section Search Method Algorithm 

Fig. 6 indicates the most optimal dimensions and values for longitudinal rebar. 

Consumed steel in optimized design is equal to 1.3359 𝑘𝑁. Design weight ratio based on 

SP-17(14) shows 32.66% reduction in consumed steel. Steel, concrete and formwork costs 

are shown in Table 4. According to Table 4, this approach in intermediate column optimal 

design showed 26% reduction in reinforced concrete construction cost. 

 

 
Figure 6. Points of applied loads to the optimized column section by using Golden Section 

Search Method Algorithm in interaction curve 

 

 

Table 4: Steel, concrete and formwork costs 
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Optimum 

Cost 

(USD) 

Cost of components Quantity 
Width 

(mm) 
Method Steel 

(USD) 

Formwork 

(USD) 

Concrete 

(USD) 

Steel 

(kN) 

Formwork 

(m2) 

Concrete 

(m3) 

297.27 116.22 50.05 131 1.3359 10.01 1.31 530 
Present 

Study 

402.61 172.61 57.6 172.4 1.984 11.52 1.724 609.6 Ref. [17] 

 

3.6 Effect of reinforced column cost optimization on dimensions and consumed steel  

To investigate the effect of optimization on intermediate concrete column cost considering 

axial load and bending moment, a column subjected to variable axial load and bending 

moment is studied in this section. Typically, axial load and bending variation domains in 

common columns in RC frames are respectively 1000-11000 kN and 200-1000 kN.m [5]. 

Also, shear force is calculated according to ACI (18-4-3-1). Material details, loading and 

material costs are presented in Table 5. Maximum and minimum consumed longitudinal 

rebar in column section are limited to 0.01 and 0.04 respectively. According to the 

standards, concrete minimum cover is 40 mm. longitudinal and transverse rebar dimensions 

are the same as previous problem. 

 

 

 
Table 5: Details of third problem 

Materials and Details: 

400                     MPa Specified Yield Strength,fy 

200000               MPa Modulus of Elasticity of Steel, Es 

35                       MPa Specified Concrete Compressive Strength , fc
′ 

3.5                      m Net Length of  Column 

0.4                      m Length of Roof 

Step Upper bound Lower bound 
Column Width (mm) 

5 1500 300 

Loading: 

Step Upper bound Lower bound  

2000 11000 1000 Pu(kN) 

200 1000 200 Mu(kN. m) 

Cost Parameters: 

Cost of Formwork 

(USD/m2) 

Cost of Steel 

(USD/kN) 
Cost of Concrete (USD/m3) 

7 100 73 

 

Fig. 7a shows the variation of reinforced concrete column with respect to optimization 

based on reinforced concrete column construction cost considering variation of axial load and 

bending moment in defined limit. As it is clear in Fig. 7a, promotion of axial load or bending 

moment or both results in an increase in optimal reinforced concrete column section. 
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COST(Pu, Mu) = 1.135 Mu
3 + 4.08PuMu

2 + 2.651Pu
2Mu 

 −7.414Pu
3 + 2.028Mu

2  − 20.52PuMu 
 +18.07Pu

2 + 25.74Mu + 61.2Pu + 284; 
 R2 = 0.995    ,   RMSE = 5.679 

Width(Pu, Mu) = −2.976 × 10−5Mu
2  − 3.06

× 10−5PuMu + 1.214 × 10−6Pu
2

+ 0.35Mu + 0.03027Pu + 314.3; 
 R2 = 0.989    ,   RMSE = 12.53 

Figure 6b. optimal response total cost 

variation based on the variation of axial load 

and bending moment  

Figure 6a. Column dimension based on the 

variation of axial load and bending moment  

 

As shown in bar chart in Fig. 6b, variation of construction cost in a variable axial load 

domain of 1000-11000 kN and constant bending moment of 200 kN.m or 4000 kN.m is 

absolutely ascendant. While for bending moments of 600 kN.m, 800 kN.m and 1000 kN.m, 

construction cost of reinforced concrete column is a curve with initially descendant behavior 

and ascendant behavior in following. The reason is increase in eccentricity and interring 

tension-controlled zone of interaction curve. In this state, the section is under the effect of 

larger bending moment comparing to axial load and neutral axis is located in domains 9, 10 

or 11 of Table 1. Also the section requires more longitudinal rebar to meet equilibrium 

equations considering effective strength reduction factor in solution of equations in tension-

controlled, transition and compression-controlled zones. This rises the final construction 

cost of reinforced concrete column. Decrease in eccentricity and getting away from tension-

controlled zone reduced the required longitudinal rebar. Subsequently, axial load goes up, 

section inters pressure-controlled zone and stays in this state. The cost variation is ascendant 

since axial load increases. Equations fitting bar charts of cost variation and optimized 

reinforced concrete column are demonstrated in Figs. 6a and 6b. Correlation coefficient 

results indicate suitable consistency of resulting equations and data obtained from charts. It 

should be mentioned that presented equations and charts for a presumed column in present 

case are easily applicable for different heights of reinforced concrete column. 

Fig. 7a and 7b present variation of longitudinal rebar section and optimal column 

dimension with respect to variation of axial load in constant bending moment of 1000 kN.m 

and variation of bending moment in constant axial load of 1000 kN. According to Figs. 7a 

and 7b, to obtain reinforced concrete column with the lowest construction cost, growth in 

reinforced concrete column dimension prevents from increase in longitudinal rebar section. 

Therefore, longitudinal rebar section always stays close to the minimum allowable 
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longitudinal rebar. This is because of high cost difference between consumed steel and 

concrete. So, in order to design a reinforced concrete column with the lowest construction 

cost, it is recommended that the dimensions be chosen to keep required steel rebar close to 

the minimum allowable value. 

In addition to the effect of axial load and bending moment on optimal design of 

reinforced concrete column, the effect of concrete compression strength variation on optimal 

design of intermediate reinforced concrete column is investigated under constant bending 

moment 1000 kN.m and variable axial load of 1000 kN to 11000 kN. The utilized 

compressive strengths and their construction costs are presented in Table 6. 
 

Table 6: Consumed concrete cost for different compressive strengths 

Cost of Concrete (USD/m3) Specified Strength,fc
′ (MPa) 

41 20 

63 30 

73 35 

84 40 

105 50 

 

  
Figure 7b. Variation of longitudinal rebar 

section and optimal column dimension with 

respect to variation of bending moment in 

constant axial load of 1000 kN 

Figure 7a. Variation of longitudinal rebar section 

and optimal column dimension with respect to 

variation of axial load in constant bending 

moment of 1000 kN.m 

 

Fig. 8a-d respectively show dimension variation of optimal column, optimal consumed 

longitudinal rebar, optimal construction cost and total consumed steel cost in optimal 

column under variable axial load, variable characteristic compressive strength of concrete 

and constant bending moment of 1000 kN.m. 

Variation of optimal column dimension for concrete characteristic compressive strength 

of 20 MPa has sharper slope comparing to other studied strengths in Fig. 8a Concrete with 

characteristic compressive strength of 20 MPa has the lowest consumed steel weight, 

construction cost and total consumed steel in axial load of 1000 kN, although its section 

dimensions are larger than others. With an increase in axial load in strengths of 30 MPa to 

50 MPa, longitudinal rebar fraction diminishes and get closer to the minimum value. Also, 
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section dimension increases with a mild slope. 

 

  
Figure 8a. Variation of optimal column 

dimension under variable axial load, variable 

characteristic compressive strength of concrete 

and bending moment of 1000 kN.m  

Figure 8. Variation of optimal longitudinal 

rebar fraction under variable axial load, 

variable characteristic compressive strength of 

concrete and bending moment of 1000 kN.m 

  

Figure 8c. Variation of optimal construction 

cost under variable axial load, variable 

characteristic compressive strength of concrete 

and bending moment of 1000 kN.m  

Figure 8d. Variation of total consumed steel 

cost in optimal column under variable axial 

load, variable characteristic compressive 

strength of concrete and bending moment of 

1000 kN.m 
 

So, as Figs. 8c and 8d show, total consumed steel weight and final construction cost 

decline. This reduction in cost and consumed steel weight continues with an increase in axial 

load to 3000 kN. In axial load of 3000 kN to 11000 kN, concrete with compressive strength 

of 20 MPa has the highest steel consumption and construction cost. Also as concrete 

compressive strength goes up, two mentioned parameters intensely decrease. For an 

intermediate column subjected to low axial load of around 3000 kN, using concrete with 

compressive strength of 20 MPa can demote the costs. For a column subjected to an axial 

load of more than 3000 kN, using concrete with higher strength reduces total steel weight as 

well as construction cost of intermediate reinforced concrete column. 
 

 

7. CONCLUSION 
 

Implementing equivalent equations, an exact solution was derived in this study for the 

intensity of longitudinal steel requirement of square section columns. Longitudinal rebar cross-
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sections were discretized based on catalogue regarding standard longitudinal and transverse 

rebar dimensions. The cross sections were then designed considering all intermediate 

deformability constraints according to ACI318-14 Code of Practice and optimal response was 

obtained from the illustrated interaction curve. The method applied in this study brought about 

a 4.35 % reduction in longitudinal rebar cross-section, 32.66% reduction in total steel 

consumption and 26% reduction in construction cost of reinforced concrete column. It may be 

incorporated as a suitable approach in designing columns of intermediate frames. The effects 

of variation in axial load, bending moment and concrete compressive strength on dimension 

characteristics of optimal column, construction cost and total consumed steel were 

investigated then. According to the results, designing optimized dimension to stay close to the 

minimum allowable value in the standards can suitably give a column with the lowest 

construction cost. Also concrete with compressive strength of 20 MPa under an inconstant 

axial load of 1000-3000 kN can be optimized column for the lowest cost possible. As well, a 

concrete cross section with a compressive strength of 30 MPa and higher under variable axial 

load of 3000-11000 kN can be a suitable choice for an optimum column carrying the lowest 

consumed steel weight and construction cost as possible. 
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