
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2019; 9(4):651-670 

 
 

 

OPTIMAL OPERATORS OF GENETIC ALGORITHM IN 

OPTIMIZING SEGMENTAL PRECAST CONCRETE BRIDGES 

SUPERSTRUCTURE 

R. Ghiamat1, M. Madhkhan2 and T. Bakhshpoori*, †3 
1Civil Engineering Group, Pardis College, Isfahan University of Technology, Isfahan, Iran 

2Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran 
3Faculty of Technology and Engineering, Department of Civil Engineering, East of Guilan, 

University of Guilan, Rudsar-Vajargah, Iran 

 

ABSTRACT 
 

Bridges constitute an expensive segment of construction projects; the optimization of their 

designs will affect their high cost. Segmental precast concrete bridges are one of the most 

commonly serviced bridges built for mid and long spans. Genetic algorithm is one of the 

most widely applied meta-heuristic algorithms due to its ability in optimizing cost. Next to 

providing cost optimization of these bridge types, the effects of each one of the main three 

selections, crossover and mutation operators are assessed, and the best operator is 

determined through the Taguchi experimental design. To validate the functionality of this 

algorithm, a bridge constructed in the city of Isfahan, Iran (completed in 2017) is optimized, 

a total of 13% reduction in cost and weight of its superstructure is evident. The efficiency of 

applying the Taguchi method in determining the type of operators of the genetic algorithm is 

proved. 

 

Keywords: segmental concrete bridge; optimization; genetic algorithm; Taguchi method 

 
Received: 25 March 2019; Accepted: 11 July 2019 

 

 

1. INTRODUCTION 
 

During past decades, optimization methods have been and are being applied to solve large 

scale and complex structural problems [1, 2]. Due to their high durability and economically 

advantageous features, pre-stressed concrete bridges, especially those with post-tensioning 

box girder, are of promising practical applications [3]. Cantilever construction is a common 
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procedure applied in pre-stressed concrete bridges [4, 5]. The history of the optimization of 

pre-stressed concrete bridges goes back to the '60s when Torres et al. [6] made an attempt to 

minimize bridge construction cost through linear programming. In most of the studies run on 

the optimization of concrete bridges in the 1960s and 1970s the mathematical methods like 

linear programming [6, 7], generalized geometric programming and the steepest gradient 

method [8] prevailed. In recent decades, the meta-heuristic optimization methods like a 

genetic algorithm (GA), neural networks, particle swarm, and ant colony optimizations have 

been and are of major concern. Metaheuristic methods are known as efficient tools in 

solving complicated structural optimization problems [9-12]. 

In optimization of pre-stressed concrete bridges the GA due to its high capabilities in 

solving problems with a combination of continuous and discrete variables and nonlinear 

constraints prevail. The assessments run by [13, 14] on the optimization of pre-stressed 

concrete bridges and [15] on the optimization of pre-stressed concrete beams are the 

examples in this context. 

There exist many studies on optimization with GA to determine the appropriate operators 

for each optimization problem. Selection, crossover, and mutation operators are the three 

main operators of the GA [16-18]. A comparative study of varying operators of the 

crossover and suggestions for selecting each of them is presented by Eshelman et al. [19]. 

The one, two, three, and four-point crossover operators in the GA are compared in [20]. A 

study of the effect of different behavior of crossover operators is run by [21, 22] who found 

that the combination of crossover operators would improve the results. The assessment run 

by Picek and Golub [23] on a great number of crossover operators in the GA, found a better 

performance of uniform and two-point crossover operators. Kazemzadeh Azad and Jayant 

Kulkarni [24] assessed the sizing and layout optimization of spatial truss structures through 

a mutation-based GA. They applied the Gaussian mutation operator to devise reproduction 

operators and the tournament selection mechanism in combination with Gaussian mutation 

operators for effective search in the design space. They applied the standard deviation (SD) 

as a criterion in matching mutation operators. A comparative study is run by Cazacu [25] on 

the performance of three modified classical mutation operators of GA in structural 

optimization, where the uniform, polynomial, and Gaussian mutation operators are 

compared to determine their accuracy, reliability, and efficiency. He deduced that all three 

operators have acceptable performance, but in terms of accuracy, the polynomial mutation 

and terms of reliability, the uniform mutations perform better. Pulivarti and Birru [26] 

assessed the influence of process parameters like fineness number, water, fly ash, molasses, 

bentonite and then the degree of ramming on the results of sand mould properties and 

optimized them through Taguchi method. They revealed that first, the water content next, 

the bentonite and degree of ramming constitute the most important parameters affecting the 

quality characteristics of sand mould properties. A new crossover operator for GA 

optimization is presented by Hussain et al. [27] where, the GA tool is applied in MATLAB 

software, and it is found that the convergence rate of their proposed crossover operator is 

higher than other conventional operators in optimizing the benchmark functions performs 

better. Castelli et al. [28] developed the definition of crossover distance between populations 

for n-points crossover. They found that the average distance between a population and the 

optimum reduces with an increase in the number of crossover points. 

There exists no study run on assessing the performance of a variety of genetic operators 
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in the optimization of segmental precast concrete bridges. Here, for the first time, while 

presenting an optimal design of these bridges by applying GA and comparing it with the real 

design [29] of the subject bridge of this study, appropriate genetic operators are evaluated 

through the Taguchi method. 
 

 

2. OPTIMIZATION ALGORITHM 
 

In addition to the direct mathematical methods, there exist a great number of other methods 

for optimization problems categorized as approximation, probabilistic, and meta-heuristic 

algorithms. The focus of meta-heuristics is on the combination of a heuristic concept with a 

mathematical planning method. Here, the GA is applied for optimization purposes. GA 

begins with the introduction of several initial solutions, which are first randomly selected 

within defined scopes of design variables and next, sorted according to their fitness. The 

fitness of each solution is determined by the proximity to the optimal solution. In GA, the 

fittest solutions have more chance to become combined and reproduced. By applying the 

crossover and mutation operators, the initial solutions are improved to produce new 

solutions with greater fitness, thus, reduced cost and weight of the superstructure. These new 

solutions replace older improper solutions. The above process is repeated until the stop 

criterion (the convergence or the count of iterations) is met [30]. The related flowchart is 

drawn in Fig. 1. 

 

 
Figure 1. GA flowchart 
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2.1 Genetic operators 

In GAs, during the reproductive stage, the following genetic operators are applied each with 

an impact a population, the next generation of that population is produced: (1) Reproduction 

operator, the selection; (2) Mating operator, the crossover; and (3) Mutation operator. 

 

2.1.1 Selection 

Based on the survival of the best theory, the best should be selected to generate a better next 

generation. For this reason, this operator is named the selection. This operator selects several 

chromosomes from a population for the reproduction of the following methods: 

(i) Random: Random selection is the simplest method of selection, where each answer 

has the same probability of choice, and fitness does not have an effect on selection 

(ii) Tournament: In a competitive sense, a subset of the solutions of a community is 

selected, where the members compete, and only one answer from each subgroup is selected 

for reproduction. 

(iii) Roulette wheel: Here, the criterion of the parents to be selected is their fitness. Better 

chromosomes have a higher possibility to be selected as parents. Each potential parent is 

assigned a slice of the circular Roulette wheel, proportional in size to its fitness, that is, the 

higher the value, the larger the size of the slice. 

 

 
Figure 2. Roulette wheel method 

 

2.1.2 Crossover 

The most important operator in the GA is the crossover operator, consisting of a process 

where the old generations of the chromosomes are combined to generate a new generation. 

The couples considered at the selection stage as the parent, exchange their genes, and 

generate new members. The crossover in the GA leads to the loss of genetic diversity or 

dispersion by allowing each parent to find good genes. This operator consists of three steps: 

(1) Selecting two strings randomly; (2) Selecting the location for random action; and (3) 

Replacing, the volume of the two strings. 

Among the many types of crossover, here the following three methods are applied: 

(i) Single point crossover: for this purpose, one point is selected randomly, the values of 

which are expressed in Fig. 3. 
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Figure 3. Single point crossover 

 

(ii) Double point crossover: for this purpose, two points are selected randomly, the values 

of which are expressed in Fig.4. 

 

 
Figure 4. Double point crossover 

 

(iii) Uniform crossover: for this purpose, the data of the first and the second parent 

chromosomes are copied randomly, Fig.5. 

 

 
Figure 5. Uniform crossover 

 

2.1.3 Mutation  

The mutation is a phenomenon in genetic science that rarely occurs in some chromosomes 

where the children are endowed with characteristics that are not owned by any of their 

parents. The contribution of the mutation in the GA is to restore the genetic material lost or 

not found in the given population, to avoid early convergence of the algorithm to local 

optimal solutions. In the binary mutations, some genes are randomly selected and converted 

into zero and one and vice versa. One of the mutation methods is when a number lower than 

one, named the probability of mutation, a random number is recalled for each gene in a 

population, and if this random number is less than the probability of mutation, gene 

mutation occurs, a rare phenomenon in nature. If the characters are continuous numbers, the 

mutation in the form of positive or negative random variations around the preceding 

character, Fig. 6. 

The main types of mutation operators applied in this study consist of:  

(1) in a fixed rate mutation, a certain percentage of chromosomes are mutated, and the 

count of mutation in each chromosome has a constant value of 10% of the difference 

between the upper and lower bounds 
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(2) reduced controlled mutation where the mutation rate decreases with an increase in the 

count of iterations  

(3) in a standard mutation, a certain percentage of chromosomes are selected in the first 

stage, and then among them, random chromosomes are selected 

In general, the contribution of genetic operators in optimization algorithms is to modify 

their exploitation and exploration capabilities. Some of these operators, like random 

selection and mutation, enhance the ability to explore the search space, while others, like the 

crossover, increase exploitation. 
 

 
Figure 6. Mutation 

 

2.2 Taguchi method 

The Taguchi method (TM) is a robust method where some consistent ideas from statistical 

experimental design are applied to estimate and improve products, equipment, and 

processes. The main objective here is to improve product quality by minimizing the effect of 

diversion causation without eliminating them. The two main tools applied in the Taguchi 

method consist of the signal-to-noise ratio, to measure the quality and the orthogonal arrays 

(OA) to check the design parameters' similarities [31] and [32]. The Taguchi design is 

applied to obtain information like the main effects and interactions among design parameters 

through the least experiments. 

The design (a controllable factor) and noise (an uncontrollable factor) characterize the 

behavior of a product or process [33]. An OA consist of a table where columns are assigned 

to factors or their interactions, and rows are assigned to the levels of different factors for a 

particular experimental trial [34]. The OA refers to the balance of combinations of factors in 

a sense that one factor is given more or less weight in the experiment than others. In OA 

effect of each factor is assessed independent of the effects of others in its mathematical 

sense [35]. 

 

 

3. FORMULATION OF OPTIMIZATION PROBLEM 
 

3.1 Objective function 

Here, this function represents the bridge superstructure construction cost. Precast concrete 

segments and pre-stressing steel cost are the two major components, which should be of 

concern, mathematically expressed as follows: 

 

CT = CPC + CPS
 

(1) 

 

where, CPC and CPS are the costs of precast concrete segments and pre-stressing steel, 

respectively, calculated through: 
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PCPCPC VUPC   (2) 

PSPSPS WUPC   (3) 

 

where, UPPC is the material, construction and installation cost of precast concrete segments per 

volume, UPPS is the material and construction cost of pre-stressing steel per weight, VPC is the 

total volume of concrete, and WPS is the total weight of pre-stressing steel. UPPC and UPPS are 

estimated at 1220 (USD/ ) and 1500 (USD/ton). These values are based on the project 

employer's report [29] with respect to the concrete of 40 MPa (5.8 ksi) compressive strength.  

The optimal design should satisfy the geometry, serviceability, ductility, and ultimate 

limit states requirements. To observe the available constraints, the following external 

penalty approach is applied:  

 

CT = CPC + CPS + Penalty
 

(4) 

 

where, Penalty is the constraint violation function expressed as: 

 





gn

i

q
jp ]g[Penalty

1

  (5) 

 

where, αp is a constant penalty coefficient, q is a non-negative coefficient, ng is the count of 

problem constraints, and gj is calculated through Eq. 6: where if gj violates the constraint, it 

should be considered the same as the constraint; otherwise, it should be assumed zero: 

 

 jjj gggif ,0max][0   (6) 

 

3.2 Design variables 

The cross-sectional dimensions of box girder and the pre-stressing strands count are 

considered as the design variables in this study and tabulated in Table 1. A longitudinal section 

of this studied bridge is illustrated in Fig. 7. The bridge is a symmetric three-span bridge with 

a constant depth. A typical cross-section of the bridge deck and the design variables with the 

slope of the web assumed as a constant is shown in Fig. 8. 
 

Table 1: Design variables. 

No. Variable Symbol Type Constraints 

1 Girder depth in pier (m) D0 Continuous 2.17 ≤ D0 ≤ 5.0 

2 Top slab thickness (mm) tt Continuous 180 ≤ tt ≤ 500 

3 Bottom slab thickness in pier (mm) tb0 Continuous 180 ≤ tb0≤ 500 

4 Bottom slab thickness in mid-span (mm) tb Continuous 180 ≤ tb ≤ 500 

5 Web thickness in pier (mm) tw0 Continuous 350 ≤ tw0≤ 500 

6 Web thickness in mid-span (mm) tw Continuous 350 ≤ tw ≤ 500 

7 Number of strands per tendon n Discrete 6 ≤ n ≤ 20 

 

3m
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Figure 7. Longitudinal section of the studied bridge [29] 

 

 
Figure 8. Typical cross-section of deck bridge 

 

3.3 Constant parameters 

These parameters consist of span length, deck width, post-tensioned anchorage system, live 

loads according to AASHTO (2002) [36], superimposed dead loads, and material properties, 

Table 2. The Class-C anchorage system and 7-wire strands with low relaxation having 12.7 

mm (0.5 in) diameter constitute the post-tensioning tendons. 
 

Table 2: Constant design parameters [29] 

Constant parameter Values 

Span length (L) 31,55,31 (m) 

Deck width (W) 13.3 (m) 

The tensile strength of pre-stressing steel (fpu) 1890 (MPa) 

The yield strength of pre-stressing steel (fy) 0.9 fpu 

The yield strength of reinforcement steel (fy) 400 (MPa) 

Unit weight of concrete 2.5 (kN/m3) 

Unit weight of Steel 78.5 (kN/m3) 

Modulus of elasticity of concrete 
 

Modulus of elasticity of pre-stressing steel 1.93×105 (MPa) 

Modulus of elasticity of reinforcement steel 2×105 (MPa) 

Live loads HS20-44 (Truck and lane load) 

Design traffic lane width 3.65 (m) 

Barrier load 5 (kN/m) 

The thickness of asphalt wearing surface 70 (mm) 

cf4700 
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In this study, the concrete compressive strength is held constant, equal to 40 MPa (5.8 

ksi). The AASHTO HS20-44 (2002) [36] live load, including truckload and distributed 

uniform load is applied on three lanes. The impact factor applied to the live load is 

calculated as follows:  

 

Impact Factor = 1.3 - 0.005 L 
(7) 

 

 

where, L is the span length (m)  

Although the pre-stressing strands' count varies, their grouping and layouts are 

considered similar to that of [37-40]: 

Group 1: 13 tendons installed in each flange for the cantilever construction make the 

total. 

Group 2: 4 tendons in each web and two tendons in the top slab constitute the total 

continuity tendons in tail spans. 

Group 3: the total continuity tendons in the center span is 20, installed as 18 tendons in 

the bottom and two tendons in the top slabs 

The longitudinal layout and section of these three group tendons are shown in Figs.9-11. 

 

 
Figure 9. Group1: Cantilever tendon layout 

 

 

 
Figure 10. Group2: Tail span continuity tendons 
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Figure 11. Group3: Center span continuity tendons 

 

3.4 Design constraints 

The design constraints like the allowable compressive and tensile stress in all segment 

installation, completion, operational phases, deflection, and geometrical constraints are 

based on AASHTO (2002) standard specifications [36]. 

 

3. 4. 1 Allowable stress constraints 

These constraints are imposed at the top, and the bottom fibers of the segments in different 

construction phases expressed as: 

 

cc f.ff.  5040  (8) 

 

where f is the stress at any point of the section, and f′c is the concrete compressive strength 

(MPa). 

Stresses are calculated and controlled in each one of the following five phases: 

Phase 1. Cantilever installation of the segments and applying the group1 post-tensioning. 

Phase 2. Completion of tail spans by post-tensioning of tendons group 2 

Phase 3. Completion of center span, where, the key segment is constructed by applying 

cast-in-place concrete thus, the left and right-sides of cantilever segments of the center span 

are connected to each other and, afterwards, 3a and 3b post-tensioning tendons are installed, 

by which the span construction is completed. 

Phase 4. Superimposed dead loads: after post-tensioning of all pre-stressing tendons, like 

the asphalt and railing loads 

Phase 5. Applying live load 

The eight critical sections of the mid-bridge and numbering of the sections with respect 

to the order of the balanced cantilever installation of segments are shown in Fig. 12. 

 

 
Figure 12. Group3: Center span continuity tendons 
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The segments are numbered according to the count of the joints between the segments 

and orientation of each segment with respect to segment zero. As to the symmetric 

configuration of the bridge and applied loadings, the stresses defined in previous phases are 

calculated in different sections. In each phase, 32 allowable tensile and compressive strength 

constraints, that is, 160 constraints constitute the five phases. 

 

3. 4. 2 Ultimate flexural strength constraints 

These constraints, are determined in different sections based on ultimate strength design 

method: 

 

nu MM   (9) 

 

where, Mu is the available bending moment, Mn is the nominal flexural strength of the 

section, and φ is the strength reduction factor equal to 0.9, according to AASHTO (2002). 

 

3.4.3 Ductility constraints 

The minimum flexural pre-stressing steel in the critical cross sections are determined 

through the following equation: 

 

ncr MM. 21  (10) 

 

where, Mcr and ΦMn are the cracking and ultimate bending moments, respectively. 

This design is carried subject to the under-reinforced conditions to provide ductile 

failure, where, according to AASHTO provisions reinforcing index should not exceed 0.36β. 

The maximum pre-stressing steel in different sections is defined as: 

 

1360  .  (11) 

 

where, ω is the reinforcing index, and β1 is the concrete compressive strength factor in case 

of compressive strength at 40 MPa (5.8 ksi) is 0.75, according to AASHTO (2002). 

 

3.4.4 Serviceability constraints 

According to AASHTO (2002), the deflection due to live load shall not exceed 1/800 span 

length (L), and is calculated by considering the maximum bending moment at the midpoint 

of the center span subject to live load, expressed as: 

 

800

L
  (12) 

 

where, Δ is the deflection at mid-span and L is the center span length. 
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3.4.5 Shear constraints 

Shear forces should be limited by the allowable shear as follows: 

 

nu VV   (13) 

 

where, Vu is the ultimate shear force, φ is the shear strength reduction factor equal to 0.9, 

according to AASHTO (2002), and Vn is the nominal shear strength of the cross-section. The 

nominal shear strength is the sum of the shear strength of concrete (Vc) and the transversal 

steels (Vs). If any lack of shear strength is observed in a section, the transversal 

reinforcement is applied, and the shear constraints based on maximum allowable transverse 

reinforcement would be expressed as: 

 

bdf.V
V

V cc
u

s
 670


 (14) 

 

 cwcic V,VminV   (15) 

 

where, b is the total width of the webs, d is the distance from the outermost compressive 

zone of the section to the steel centroid, Vci and Vcw are the nominal shear strengths of the 

concrete based on the bending-shear cracking and shear cracking of the pre-stressed beam 

section, respectively. 

 

3.4.6 Geometry constraints 

According to the AASHTO (2002) provisions [36], the minimum top flange thickness 

should be 1/30 of the clear distance between fillets or webs but not less than 150 mm (6"). 

This constraint is applicable for the bottom flange, given the difference where the minimum 

allowable thickness is 140 mm (5.5"). By considering these specifications, the top flange 

thickness is considered constant, equal to 250 mm (9.8 in), while the bottom flange 

thickness varies along the span with a minimum value of 180 mm (7.1 in). 

There exists no limitation on the depth of the box girder specified in AASHTO (2002) 

standard. A single cell box would preferably be practical when depth to width ratio ≥ 1/6, 

according to AASHTO LRFD (2012) specifications [41]. The minimum depth of the girder 

section is 2220 mm (85.4 in) that is 1/6 of the top flange width. 

 

 

4. RESULTS AND DISCUSSION 
 

4.1 Optimization results 

After formulating the bridge analysis based on design variables, it is verified through manual 

calculations for a practical example designed by conventional design procedure. The study 

bridge is the first piece of the Esteglal Bridge system, which has three continuous openings. 

These values of the parameters, Table 1 are considered as the variables and the other 
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parameters are held constant and equal to the design values Table 1. GA is coded in MATLAB 

and added to the analysis and design codes. The optimization algorithm is run independently 

for three times. 

Initial optimizations are run with different types of operators, which lead to different 

results. The difference in the results indicates the necessity of determining the optimal 

combination of the genetic operators; for this purpose, the Taguchi method is adopted to 

determine the best type of the genetic operators in an optimization algorithm for segmental 

precast concrete bridges. For each one of the operators, three different types are of concern. 

The selection operator (A) is divided into three: random(A1), tournament(A2) and Roulette 

wheel(A3) methods; the crossover operator(B) is divided into three single-point(B1), double-

point (B2)and uniform(B3) methods, and the mutation operator(C) is divided into three: fixed 

rate mutation (C1), controlled mutation (C2) and standard mutation(C3) methods. Here, the 

OA of L9 is selected through the Taguchi method in Minitab software environment, the 

outcome of which is shown in Fig. 13. 

 

 
Figure 13. Data fed in OAs arrays in the Taguchi method 

 

The optimization of each one of the operator's combinations in this figure is run three 

times, and the cost saving is considered as a qualitative indicator. Taguchi devised the S/N 

(signal to noise) ratio to quantify the present variation. The term signal is the desirable value 

(mean), and the term noise is the undesirable value, the SD. There exist several S/N ratios 

depending on the types of characteristics: the lower, the better, the nominal the best, and the 

higher, the better. Since the nature of the objective function is to maximize cost saving, the 

higher, the better criterion is selected, expressed as [31]: 

 














 



n

1i
2

iy

1

n

1
log10N/S  (16) 

 

where, yi is the response for the given factor level combination and n is the count of the 

responses in the factor level combination. 
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The columns C1 to C3 in Fig. 13 represent the count of the genetic operator combinations 

type, and columns C4 to C6 represent the cost savings of the superstructure resulting from 

three runs of the optimization in comparison with the actual design in U.S dollars. Column 

C7 represents the S/N ratios; Column C8 represents the SD logarithm; column C9 represents 

the SD (standard deviations); column C10 represents the means of saving values, and 

column C11 represent the coefficient of variation generated by the Taguchi method 

calculated through Minitab software. 

The convergence diagrams for the nine combinations are shown in Fig.14, where, the 

efficiency of the algorithm varies subject to different combinations of genetic operators. The 

general overview of these diagrams indicates that the algorithm in A1B2C2, A2B1C2 and 

A3B3C2 states quickly stops at one of the optimal local points and does not achieve global 

optimal points, indicating the weakness of type 2 mutation operator (controlled). Due to the 

differences in the combinations of genetic operators function, it is necessary to determine the 

optimal combination of operators. 

 

 
Figure 14. Convergence diagrams for different combinations of genetic operators 

 

After feeding the data to the software and running the calculations of the Taguchi 

method to maximize the objective function, the saving cost of the superstructure is the yield, 

Fig. 15. 

The average signal to noise ratio is plotted for the different states of selection, 

crossover, and mutation operators, Fig.15. Because the objective here is to maximize the 

value of the objective function, in each one of the graphs, the state that represents the larger 

S/N ratio, is the best. 

As observed in S/N ratio diagrams, option 2 of the operator A, option 1 of the operator 

B and option 1 of the operator C (combining the A2B1C1 options) has a larger S/N ratio; 

therefore, the second type, the tournament selection method, the first-order crossover 

operator representing the single-point crossover, and the first-order mutations operator with 

a constant rate, have larger S/N ratios. Consequently, according to the Taguchi method, the 

combination of operators of tournament selection, single-point crossover, and fixed-rate 
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mutations is optimal. These results are different from previous studies [13, 14]. Since in 

different optimization problems, irregularities and complexities vary in different manner, 

different combinations are selected as optimal genetic operators. 

 

 
Figure 15. Signal to noise ratios calculated in the Taguchi method 

 

The optimization with the combination of optimal operators introduced by the Taguchi 

method (A2B1C1) is run here. The convergence history diagram of the cost function with 

optimal GA operators is shown in Fig.16, where the convergence rate of the algorithm has 

significantly increased with optimal operators, while the resulting savings amount is slightly 

higher. 

 

 
Figure 16. Convergence graph recorded for the best run 
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For better comparison, the performance of different combinations of genetic operators, the 

details of the bridge optimization in various performances are provided in Table 3. 

 
Table 3: Results of cost optimization of the subject bridge with different genetic operators 

Iteration 

number of 

12% saving 

Saving 

cost (%) 

Iteration 

number of 

the 

optimal 

point 

Cost 

(million $) 

Mutation 

type 

Crossover 

type 

Selection 

type 
Combination 

46 12 46 1.131 fixed rate single-point random A1B1C1 

- 10 9* 1.156 controlled 
double-

point 
random A1B2C2 

60 13 80 1.129 standard uniform random A1B3C3 

- 11 12* 1.147 controlled single-point tournament A2B1C2 

98 12 98 1.132 standard 
double-

point 
tournament A2B2C3 

14 13 42 1.123 fixed uniform tournament A2B3C1 

40 13 98 1.125 standard single-point 
Roulette 

wheel 
A3B1C3 

12 13 87 1.122 fixed 
double-

point 

Roulette 

wheel 
A3B2C1 

- 10 7* 1.162 controlled uniform 
Roulette 

wheel 
A3B3C2 

6 13 81 1.120 fixed single-point tournament 
A2B1C1 

(TM) 

*Trapped in the local optimal point 

 

By comparing the results of the final convergence in different states, it is revealed that 

regardless of the saving value, the convergence rate of the algorithms directly depends on 

the type of the mutation operator. Comparing the count of iterations of each algorithm in 

approaching the optimal point, values in column 5, indicates that among the types of 

mutation operators, the controlled mutation operator has the highest convergence rate, 

followed by the fixed rate and the standard mutation operators. As observed in Table 4, in 

A1B2C2, A2B1C2, and A3B3C2 combinations, the algorithm converges into its optimal point at 

iterations 9, 12 and 7, respectively. Algorithms with a constant rate mutation operator 

converge at their optimal point at iterations 46, 42 and 87, and algorithms with standard 

mutations convergence at iterations 80, 98, and 98, respectively. At the same time, 

comparing the optimal values obtained from different states, column 4, indicate that 

combinations with a controlled mutation operator, due to a sharp decrease in the mutation 

rate at higher iterations, lose the ability to release the algorithm from local optimal points, 

thus all are trapped at the optimal local points. However, algorithms with a constant and 
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standard rate mutation operator have a lower convergence rate and are released from the 

local optimal points. 

The details of the algorithm implementation are presented with the proposed combination 

of the Taguchi method in the last row of Table 4. The results indicate that the proposed 

combination of the Taguchi method, in addition to improving the exploitation capability of 

the algorithm to be applied and achieving greater savings, has a higher convergence rate, 

while at iteration six it achieves a 12% saving. It can be deduced that in the optimization of 

the segmental pre-stressed bridges with high complexities, the combination of genetic 

operators with higher exploration is better, and the use of higher exploitation operators will 

stop the algorithm at the local optimal points. 

The optimum results for the best runs are tabulated in Table 4. Here, GA is fixed at the 

bottom flange thickness (tt and tb) at its lower bound 180 mm, which is its lowest allowable 

value. This finding is in agreement with that of Ref. [42]. 

This proposed optimization procedure yields a total cost saving of $169,640. The 

obtained results here indicate a 13% reduction in the construction cost and weight of the 

superstructure. Due to the high ratio of the unit price of pre-stressing steel in relation to 

concrete, this optimization leads to a greater reduction in pre-stressing steel than the 

concrete volume of the segments. 

 
Table 4: Results of cost optimization of the subject bridge with different genetic operators 

Design D(m) tt(m) tb0(m) tb(m) tw0(m) tw(m) n Weight (kN) Cost(USD) 

Practical 

example 
2.5 0.25 0.45 0.25 0.60 0.40 12 24714 1,290,800 

GA based 2.52 0.18 0.335 0.18 0.35 0.35 10 21530 1,121,160 

      Total reduction 3184 169,640 

 

 

5. CONCLUSION 
 

In this study, a GA is designed in MATLAB software to optimize the segmental precast 

concrete bridge with seven variables and about 200 constraints according to AASHTO 

LRFD and AASHTO standard specifications for assessing the effect of different genetic 

operators on the efficiency of the optimization algorithm. The subject bridge (completed in 

2017 in Isfahan, Iran) is selected as a case study, and the algorithm's efficiencies are 

calculated and validated with the selection, crossover, and mutation genetic operators. The 

Taguchi experimental design method is adopted to determine the best combination of 

operators: 

The results are summarized as follows: 

 Implementing an optimization algorithm with different types of genetic selection, crossover 

and mutation operators provides different results with a difference of 4% significance 

 Figures and tables of the GA implementation with different operators indicate that the type of 

mutation operator has a direct effect on the convergence rate of the algorithm. The controlled 

mutation operator has the highest convergence rate, and the standard mutation operator has 

the lowest convergence rate 
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 Comparison of the results of different studies in structural optimization problems indicate 

that, depending on the number of design variables and the irregularity of the search space, the 

combination of optimal operators is different 

 The optimal combination of the genetic operators is determined through TM. The obtained 

results indicate that the Taguchi method combination of tournament selection, single-point 

crossover, and fixed-rate mutations operators is better 

 The above combination is controlled by the optimization algorithm, and it improves the initial 

optimization and greatly increases the convergence rate 

 Cost optimization with the optimal combination of genetic operators leads to a 13% reduction 

in the construction cost and weight of this subject bridge superstructure, mostly due to the 

reduction in required pre-stressing tendons 
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