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ABSTRACT 
 

In recent years, the optimization of truss structures has been considered due to their several 

applications and their simple structure and rapid analysis. DNA computing algorithm is a 

non-gradient-based method derived from numerical modeling of DNA-based computing 

performance by new computers with DNA memory known as molecular computers. DNA 

computing algorithm works based on collective intelligence. It works with doing random 

search in the search space and creating the initial random population by modeling DNA-

based computing operators and applies the operators derived from genetic algorithm to 

achieve the optimum solution of the objective function. Generalized Convex Approximation 

(GCA) method is a gradient-based method that with approximation of the main function and 

starting from a point, finds the optimum solution using information about functions and their 

gradient. In this research, in order to minimize the weight of truss, the cross-section areas of 

the elements as discrete variables are optimized by DNA computing algorithm, and the 

coordinates of truss nodes as continuous variables are optimized by Generalized Convex 

Approximation (GCA) method. Therefore, to simultaneously optimize the size and geometry 

of truss structures, these two methods are used in combination. The results of numerical 

examples show the proper functioning of this process. 
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1. INTRODUCTION 
 

Nowadays, optimization plays an important role in solving many engineering problems such 

as structural engineering. So, the growth and development of computer science, and also the 

importance of achieving optimum solution in short time have caused the researchers 

welcome using meta-heuristic algorithms with random search in solving optimization 

problems. The meta-heuristic algorithms such as genetic algorithm, ant colony algorithm, 

particle swarm optimization algorithm and simulated annealing algorithm are the most 

attractive. These algorithms do not need common computations such as computing gradient 

of functions. So, they are more rapid than ordinary algorithms in solving optimization 

problems. 

Also, because of random search in the search space during the process of solving 

optimization problems, the exploration and exploitation performance of these algorithms rise 

and therefore, the chance of achieving global optimum solution increases. 

DNA-based computing is a new research method. In this method, the computation is 

performed based on DNA (Deoxyribonucleic acid) molecules and using new computers with 

DNA memory called molecular computers. At first, DNA-based computing was proposed by 

Adelman in 1994 to solve travelling salesman problem [1]. By successful solving of the 

travelling salesman problem, the ability to do DNA-based computing in solving NP (Non 

Polynomial) problems was distinguished. This method was used to solve other problems 

such as vertex coloring problem [2], the minimum spanning tree problem [3], the knapsack 

problem [4] and the N-Queens Problem [5]. 

In DNA-based computing, by taking advantage of high volume data storage feature in 

molecular computers, DNA strings are produced. Then, by applying operators in parallel on 

all strings, DNA strings are purified. By evaluating the remained strings, the computational 

problem will be solved [6]. 

DNA computing algorithm is a meta-heuristic algorithm and a non-gradient-based 

method resulted from numerical modeling of DNA-based computing performance by 

molecular computers that works based on collective intelligence, doing random search in 

search space, creating initial random population by modeling DNA-based computing 

operators and applying operators derived from genetic algorithm to achieve the optimum 

solution for objective function [7]. 

Generalized Convex Approximation (GCA) method is a step-by-step mathematical 

programming method that converges to the optimum solution by producing convex 

approximations of optimization problem called sub-problem and solving these sub-problems [8]. 

In this research, in order to minimize the weight of truss structures, the cross-section 

areas of the elements as discrete variables are optimized by DNA computing algorithm (size 

optimization), and the coordinates of truss nodes as continuous variables are optimized by 

Generalized Convex Approximation (GCA) method (geometry optimization). 

Therefore, to simultaneously optimize the size and geometry of truss structures, these two 

methods are used in combination and the results will be discussed in the numerical 

examples. 
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2. THE PROBLEM OF SIZE AND GEOMETRY OPTIMIZATION OF TRUSS 

STRUCTURES 
 

The general form of an optimization problem is formulated as Equation (1): 

 

 

(1) 

 

where, f(X) is the objective function, X is the set of design variables, m is the number of 

constrains, n is the number of variables and g̅i(X) is the allowable value of n-th constraint 

[9]. 

In size and geometry optimization of truss structures, the goal is minimizing the weight 

of truss structures under design constraints. In size optimization, the cross-section areas of 

the elements are selected as discrete variables, and in geometry optimization, the coordinates 

of truss nodes are selected as continuous variables [10]. 

The general form of optimization problem of truss structures is formulated as Equation 

(2) with selecting the truss weight as objective function, and selecting constraints such as 

axial stresses of the elements, displacements in the degrees of freedom of truss nodes and 

slenderness ratios of the elements: 

 

 

(2) 

 

where X is the set of design variables, W(X) is the truss weight as objective function, ne is 

the number of truss elements, nj is the total number of the degrees of freedom of truss nodes, 

γi is the specific weight of i-th element, Ai is the cross-section area of i-th element, Li is the 

length of i-th element, σi(X) is the stress of i-th element, σ̅i is the allowable stress of i-th 

element, Δj(X) is the displacement in the j-th degree of freedom, Δ̅j is the allowable 

displacement in the j-th degree of freedom, λi(X) is the slenderness ratio of i-th element, λ ̅i is 

the allowable slenderness ratio of i-th element, xj is the coordinate of the j-th degree of 

freedom, xj
min and xj

max are respectively the lower limit and upper limit of the j-th degree of 

freedom and S is the cross-section list of elements [11]. 
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3. DNA-BASED COMPUTING BY MOLECULAR COMPUTERS 
 

DNA molecule is made up of two protein strings wrapped and called polynucleotide. These 

strings are made of ingredients known as organic base called nucleotide. Nucleotides are 

divided into four groups: Adenin, Guanin, Cytosine and Thymine which are respectively 

abbreviated with the letters A, G, C and T. In each DNA molecule by using the 

complementarity feature of bases A with T and C with G and hydrogen bond between 

complementary bases, polynucleotide strings bond together. 

DNA-based computing is a new research method to solve computational problems which 

computation is done based on DNA molecule and using new computers with DNA memory 

called molecular computers [1]. Molecular computers are the next generation computers. 

They use DNA molecules as storage memory of information [12]. DNA molecules can store 

more information than current computers memory. Therefore, molecular computers store 

more information than silicone computers. Also, DNA molecules provide the energy of 

molecular computers in such a way that by breaking the bonds between DNA strings, the 

released energy is used in molecular computers [13]. 

DNA-based computing was first used by Adelman in 1994 to solve travelling salesman 

problem. Then this method was used to solve NP problems [14]. In solving a computational 

problem by DNA-based computing, trillions DNA strings with bases A, G, C and T are 

produced as the solutions which is due to high capacity of information storage. These strings 

are placed in test tubes. Then by applying specific and biochemical operators in parallel on 

all strings, DNA strings are purified and the needed strings remain. After that, by evaluating 

the remained strings as desired solutions to the problem, the final solution of the 

computational problem is achieved. 

The operators used in DNA-based computing are:  

(1) Synthesis operator that produces DNA strings based on bases A, G, C and T with a 

specific length. It is possible to assign these strings as sub-string to design variables of 

problem. 

(2) Ligation operator with salt and water and ligase pastes the sub-strings related to the 

problem variables together and some strings are produced as the computational problem 

solutions. 

(3) PCR1 operator amplifies the desired complementary strings. In this way, according to 

Fig. 1, if the double-string molecule of XYZ↕ is available, the temperature is increased to 

95 celsius degree and the two strings of DNA molecule by melting process are converted 

to single strings of XYZ↑ and XYZ↓. Then, the initial signals of the beginning and end of 

the considered string that are Z↓ and X↑ are added to combine with molecules and to 

achieve YZ↑, X↕, Z↕ and XY↓. After that, polymerase enzyme can produce two strings 

of XYZ↕. At this step, two versions of the original string have been produced. By 

repeating this process it is possible to produce 2n versions of complementary string after 

n steps. Then, by the bonding of DNA strings with complementary strings, DNA strings 

with desired coding are purified. Therefore, the strings which present the problem desired 

variables remain. 

 

                                                   
1 Polymerase Chain Reaction 
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Figure 1. The process of PCR operator [15] 

 

(4) Gel electrophoresis operator in which DNA strings with different lengths are placed on a 

gel surface. Then, with addition of electrical current to the surface and increasing the 

temperature, the strings are negatively changed and move towards positively charged 

electrodes. In this process, due to higher speed of strings with less length, the strings are 

divided based on length. So, gel electrophoresis operator purifies the strings with desired 

length [6]. 

 

 

4. DNA COMPUTING ALGORITHM 
 

DNA computing algorithm is a meta-heuristic algorithm and a non-gradient-based method 

derived from numerical modeling of DNA-based computing performance by molecular 

computers. DNA computing algorithm works based on collective intelligence. It works with 

doing random search in the search space and creating the initial random population by 

modeling DNA-based computing operators and applies the operators derived from genetic 

algorithm to achieve the optimum solution of the objective function [7]. Below, the details 

of the stages of DNA computing algorithm are discussed. 

 

4.1 The production of the initial population individuals strings by modeling operators of 

DNA-based computing 

In DNA computing algorithm, an individual is recognized as a point of search space or a 

solution of optimization problem. In this way, by randomly producing a number of 

individuals that are called the initial population, the optimization process starts from several 

different points of search space. The number of population individuals is called population 

size, which is typically determined at the beginning of the algorithm. In DNA computing 

algorithm, all population individuals have coded string with given length and based on DNA 

molecule bases (A, G, C and T), which is formed by pasting the defined sub-strings of 

design variables. 

The strings of population individuals are produced by modeling DNA-based computing 

operators. So, by modeling of Synthesis operator, the sub-strings of design variables are 

randomly produced with given length. Then, by modeling of ligation operator, the sub-
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strings related to design variables paste together and the general string of every individual in 

population is formed. The modeling of PCR operator causes the sub-string related to every 

variable be appointed to the place of that variable. 

Also, by modeling of gel electrophoresis operator, the length of general string of every 

individual in population that is the sum of the lengths of sub-strings related to design 

variables is controlled. Fig. 2 shows an example of the string of an individual in population 

with length 12 which contains 3 design variables with sub-strings with length 4. 

 

 

 
 

Figure 2. An example of produced string by modeling DNA-based computing operators 

 

4.2 Decoding the design variables 

To decode the strings related to discrete variables, it is possible to assign numbers to the 

DNA strings and using the one-to-one correspondence of the numbers with the numerical 

values of the variables. In this way, a number is assigned to every sub-string. Then, with 

one-to-one correspondence of the available numbers with the table of numerical values 

related to every variable, the numerical value of that variable is specified. 

 

4.3 Evaluating the fitness function 

In DNA computing algorithm, the unconstrained function which must be maximized is 

called the fitness function. Generally, DNA computing algorithm is used to optimize such 

functions. So, in the unconstrained maximization problems, the fitness function is the 

objective function. But, in the constrained minimization problems, the fitness function is 

achieved by some reformations. 

In this research, to solve constrained minimization problems, by using the exterior 

penalty function method, the constrained problem is converted to unconstrained problem 

[16]. In this way, according to the general form of the constrained minimization problem 

shown in Equation (1), the constraint violation coefficient is determined with Equation (3): 

 

 
(3) 

 

where, X is the set of design variables, m is the number of problem constraints and g̅i(X) is 

the allowable amount of i-th constraint. Therefore, the objective function of the 

unconstrained problem is defined as Equation (4): 

 

 (4) 

 

where, f is the objective function, fm is the reformed objective function, c is the constraint 

violation coefficient and k is the constraint participation coefficient in the optimization 

problem. Finally, the fitness function is defined by the reverse of reformed objective 
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function and as Equation (5): 

 

 
(5) 

 

Also, in this research, to increase the convergence power of algorithm, the elitist 

approach has been used. In this way, after producing the population and applying 

algorithm operators, the most graceful individuals are selected as the next generation [17]. 
 

4.4 Selection operator 

The selection operator increases the average fitness of population individuals in generations. 

In this research, the roulette wheel method has been used to perform selection operator. In 

this method, every population individual is given the probability of being selected and the 

participation in new generation production. So, every individual with more fitness, has more 

selection probability. In this way, if a population is N individuals and fitness function value 

of xi is f(xi), the selection probability of xi is determined with Equation (6): 

 

 

(6) 

 

Therefore, according to the cumulative probability of selecting individuals and by 

randomly selecting them, the individuals are selected for the production of the new 

generation [18].  
 

4.5 Crossover operator 

The crossover operator rises the exploration and exploitation performance during the 

algorithm process. In crossover operator by using a percentage of the population called the 

crossover probability (ρc), the number of produced individuals in this operator in every 

generation is determined. In this research, the crossover operator has been used as the one-

point method. 

The one-point crossover operator breaks the DNA strings of two selected individuals as 

parent at one point, and replaces the broken parts. Therefore, two new individuals called 

child are produced [18]. Fig. 3 is an example of the one-point crossover operator. The strings 

break has been happened between third and fourth nucleotides on the left of strings. 

 

CGGTC ATA Parent 1 

AATTG GCT Parent 2 
   

AATTG ATA Child 1 
CGGTC GCT Child 2 

Figure 3. An example of one-point crossover operator  
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4.6 Mutation operator 

The mutation operator prevents the getting caught of algorithm in the trap of local optimum 

points. In mutation operator, by using a percentage of the population called the mutation 

probability (ρm), the number of individuals that should be randomly under the mutation 

operator is determined. In this research, the mutation operator has been used with uniform 

method. In this way, by determining a string called mask, and containing numbers 0 and 1, 

the sub-strings of variables corresponding to number 1 are changed and a new sub-string is 

determined randomly [19]. 

As an example, if the selected individual for the mutation operator has 3 variables and 

every variable has a sub-string with length 4, the general string is as Fig. 4: 

 

 

 

 

Figure 4. An example of the string of selected individual for mutation operator 

 

And if the mask string be formed as Fig. 5: 

 

0 1 0 

Figure 5. An example of mask string 

 

Then, the sub-string related to x2 should be changed. Therefore, a string like the string 

in Fig. 6 is created. 

 

 

 
Figure 6. The changed string under mutation operator 

 

 

5. GENERALIZED CONVEX APPROXIMATION (GCA) METHOD 
 

In large scale optimization problems, specifically structures optimization problems, solving 

the problem is nearly impossible due to various problem constraints and difficulty in 

achieving derivatives of objective function and problem constraints at different stages. In 

this condition, the problem can be solved by convex approximation. In this way, the solution 

of the problem converges to the optimum solution by producing series of simple sub-

problems which are approximations of the original problem and solving these sub-problems 

with different methods [10]. 

In this research, the Generalized Convex Approximation (GCA) method has been used 

[8]. The Generalized Convex Approximation (GCA) method is a method to solve 

1 2 3x x x

ATCC GATT ACTA

1 2 3x x x

ATCC GGAC ACTA
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optimization problems as Equation (7): 

 

 

 

 

 

 

(7) 

 

where, n is the number of design variables, m is the number of problem constrains, X is 

the vector of design variables, f(X) is the objective function, gi(X) is the i-th constraint 

function of the problem and xj
min

 and xj
max

 are respectively the lower limit and upper 

limit of the j-th variable of the problem. In this way, every optimization problem by 

using Generalized Convex Approximation (GCA) method converts to Equation (8): 

 
 

 

 

 
(8) 

 

where, n is the number of design variables, m is the number of problem constrains, X is the 

vector of design variables, f˜(X) is the approximation of the objective function, g˜i(X) is the 

approximation of i-th constraint function and Lj
(k) and Uj

(k) are called moving limits which 

are updated at each iteration and are defined as Equations (9) and (10): 
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Therefore, at each iteration by solving the k-th approximation sub-problem with an 

approximation method and achieving the optimum design point X(k), the (k+1)-th sub-

problem is approximated. Generally, these approximations are based on the information of 

current and previous design point. Then, by solving the (k+1)-th sub-problem, the optimum 

design point X(k+1) is achieved and this process continues until the problem converges to an 

optimum point. 

In Generalized Convex Approximation (GCA) method, the approximation of the 

objective function and problem constraints are defined as follows: 
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where 

 

 

 

 

(12) 

 

 

(13) 

 

where, f(X(k)) is the value of original function for design point X(k), and cj and rj and bj are 

approximation parameters which are determined for every design variable. The value of the 

first and second order derivatives of the original function at every design point are defined 

as Equations (14) and (15): 
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Also, due to the accuracy of the approximation,  

 

In Generalized Convex Approximation (GCA) method, the approximation parameters are 
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By combination of Equations (16) and (17), the cj parameter is defined as Equation (21): 

 

 

 

 (21) 

 

where, by solving the equation f(cj)=0 the value of cj is achieved. Also, to prevent the 

difficulty in computing the functions value and derivatives, the limitation cj≤xj
min is used. At 

the first iteration, the information at design point X(k-1) is not available. So, the 

approximation parameters are determined as Equation (22): 
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In this research, the simplified form of Generalized Convex Approximation (GCA) 

method that uses first order derivative is used. In this method, the approximation process is 

like second order form. The only difference is in determining the approximation parameters. 
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Approximation (GCA) method are determined as follows: 
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(24) 

 
(25) 

 

(26) 

 

(27) 

 

At the first iteration, since there is no information at design point X(k-1), the approximation 

parameters are determined as Equation (28): 
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The first and second order derivatives of the functions at Generalized Convex 

Approximation (GCA) method are achieved from Equations (29) and (30): 
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6. THE COMBINATION OF DNA COMPUTING ALGORITHM AND 

GENERALIZED CONVEX APPROXIMATION (GCA) METHOD 
 

In this research, in order to minimize the weight of truss structures, the cross-section areas of 

the elements as discrete variables are optimized by DNA computing algorithm, and the 

coordinates of truss nodes as continuous variables are optimized by Generalized Convex 

Approximation (GCA) method. 

In this way, at the first stage by selecting appropriate and similar cross sections for truss 

elements, the coordinates of truss nodes are optimized by Generalized Convex 

Approximation (GCA) method. Then, at the second stage with achieved coordinates from 

the first stage and by using DNA computing algorithm, the cross-section areas of the 

elements are optimized.  

In Fig. 7 the flowchart of the process of size and geometry optimization of truss 

structures by using the combination of DNA computing algorithm and Generalized Convex 

Approximation (GCA) method is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 7. The flowchart of optimization of trusses using combined algorithm DNA-GCA 
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7. NUMERICAL EXAMPLES 
 

In this research, five problems about minimizing the weight of truss structures in order to 

control the numerical efficacy of the combination of DNA computing algorithm and 

Generalized Convex Approximation (GCA) method have been solved. This method has been 

coded in MATLAB software. The truss structures have been analyzed by using the stiffness 

method. The results of optimization have been compared with the results of different 

references. The parameters set for solving the problems are summarized in Table 1. 

 
Table 1: The parameters set for solving the problems 

Value Parameter 
100 Population size 
80% Crossover probability (ρc) 
10% Mutation probability (ρm) 

 

Since the discussed method for optimization process is stochastic, the optimization 

program has been run 10 times and the average of 10 runs and also the best run have been 

reported. 

 

7.1 Twenty five-bar truss 

A twenty five-bar truss as Fig. 8 has been considered. The coordinates of truss nodes have 

been shown in Table 2. The grouping of truss elements as the size variables has been shown 

in Table 3. The data to design truss has been shown in Table 4. Modulus of elasticity of the 

material is 68.95 Gpa and the specific weight is 2720 kg/m3. The results of size and 

geometry optimization of the truss have been compared with other references in Table 5. 

The stresses of the elements have been shown in Table 6. The displacements of truss nodes 

have been shown in Table 7. The optimum geometry of the truss has been shown in Fig. 9. 

Also, the convergence process of truss weight has been shown in Fig. 10. 

 

 
Figure 8. Twenty five-bar truss 
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Table 2: The coordinates of truss nodes for twenty five-bar truss 

z(cm) y(cm) x(cm) Node 
508 0 -95.25 1 
508 0 95.25 2 
254 95.25 -95.25 3 
254 95.25 95.25 4 
254 -95.25 95.25 5 
254 -95.25 -95.25 6 
0 254 -254 7 
0 254 254 8 
0 -254 254 9 
0 -254 -254 10 

 

Table 3: The grouping of truss elements for twenty five-bar truss 

Members (end nodes) Group 
1(1,2) A1 

2(1,4),3(2,3),4(1,5),5(2,6) A2 

6(2,5),7(2,4),8(1,3),9(1,6) A3 

10(3,6),11(4,5) A4 

12(3,4),13(5,6) A5 

14(3,10),15(6,7),16(4,9),17(5,8) A6 

18(3,8),19(4,7),20(6,9),21(5,10) A7 

22(3,7),23(4,8),24(5,9),25(6,10) A8 

 

Table 4: The data to design twenty five-bar truss 

Node        Fx (KN)            Fy (KN)            Fz (KN) 

1               4.454                -44.537            -44.537 

2               0                       -44.537            -44.537 

3               2.227                0                       0 

6               2.672                0                       0 

Loading data 

Size variables 

A1; A2; A3; A4; A5; A6; A7; A8 

Design variables Geometry variables 

x4= x5=- x3=- x6; y4= y3=- y5=- y6; z4= z3= z5= z6 

x8= x9=- x7=- x10; y8= y7=- y9=- y10 

Stress constraints 

(σt)i ≤ 275.8 Mpa;              i=1,2,…,25 

|(σc)i| ≤ 275.8 Mpa;           i=1,2,…,25 

Constraint data 

Displacement constraints 

|Δi| ≤ 0.89 cm;                  i=1,2,…,6 

Side constraints of geometry variables 

50.8cm ≤ x4 ≤ 152.4cm 

101.6cm ≤ y4 ≤ 203.2cm 

228.6cm ≤ z4 ≤ 330.2cm 

101.6cm ≤ x8 ≤ 203.2cm 
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254cm ≤ y8 ≤ 355.6cm 
Ai є S={0.645I (I=1,2,…,26), 18.064, 19.355, 20.645, 

21.935}cm
2
          i=1,2,…,25 

List of the available 

profiles 

 
Table 5: The optimization results of the size and geometry of twenty five-bar truss 

Present work Rahami et al 

[22] 
Kaveh and 

Kalatjari [21] Wu and Chow [20] Design variables 

0.645 0.645 0.645 0.645 A1 

Size variables 

(cm
2
) 

0.645 0.645 0.645 1.29 A2 
5.805 7.097 7.097 7.097 A3 
0.645 0.645 0.645 1.29 A4 
0.645 0.645 0.645 1.935 A5 
0.645 0.645 0.645 0.645 A6 
0.645 1.29 0.645 1.29 A7 
6.45 5.16 6.452 5.806 A8 

92.29 83.9436 92.024 104.318 x4 
Geometry 

variables 

(cm) 

143.093 136.0584 148.742 135.814 y4 
320.342 329.9694 293.599 316.484 z4 
129.108 111.2078 118.008 129.032 x8 
347.53 347.569 324.993 333.959 y8 
53.0067 54.53 56.29 61.83 Weight (kg) 

 
Table 6: The stresses of the elements of twenty five-bar truss 

Stress (kg/cm
2
) Member Stress (kg/cm

2
) Member 

-487.17 14 135.74 1 

467.94 15 -211.50 2 
-519.97 16 383.53 3 
426.99 17 -960.02 4 
-434.61 18 -427.34 5 
629.03 19 -1077.97 6 

-1302.82 20 116.89 7 

-171.49 21 168.65 8 

241.71 22 -1031.63 9 

63.21 23 397.00 10 

-1003.52 24 527.95 11 

-828.92 25 -143.53 12 

  -379.01 13 

 
Table 7: The displacements of truss nodes for twenty five-bar truss 

∆z (cm) ∆y (cm) ∆x (cm) Node 
-0.4687 -0.8900 0.8274 1 
-0.4616 -0.8806 0.8649 2 
-0.1880 -0.4239 0.6701 3 
-0.1366 -0.3932 0.6316 4 
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-0.1985 -0.6123 0.6353 5 
-0.2560 -0.5887 0.7368 6 
0.0000 0.0000 0.0000 7 
0.0000 0.0000 0.0000 8 
0.0000 0.0000 0.0000 9 
0.0000 0.0000 0.0000 10 

 

 
Figure 9. The optimum geometry of twenty five-bar truss 

 

 
Figure 10. The weight convergence process of twenty five-bar truss 

 

7.2 Eighteen-bar truss 

An eighteen-bar truss as Fig. 11 has been considered. The data to design truss has been 

shown in Table 8. Modulus of elasticity of the material is 10000 ksi and the specific weight 

is 0.1 Ib/in3. The results of size and geometry optimization of the truss have been compared 
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with other references in Table 9. The stresses of the elements have been shown in Table 10. 

The optimum geometry of the truss has been shown in Fig. 12. Also, the convergence 

process of truss weight has been shown in Fig. 13. 

 

 
Figure 11. Eighteen-bar truss 

 
Table 8: The data to design eighteen-bar truss 

Node         Fx (Kips)            Fy (Kips)            Fz (Kips)  
1                0                         -20                     0 

2                0                         -20                     0 

4                0                         -20                     0 

6                0                         -20                     0 

8                0                         -20                     0 

Loading data 

Size variables 
A1= A4= A8= A12= A16; A2= A6= A10= A14= A18;  

A3= A7= A11= A15; A5= A9= A13= A17 Design variables 
Geometry variables 
 x3; y3; x5; y5; x7; y7; x9; y9 

Stress constraints 
(σt)i ≤ 20 Ksi;              i=1,2,…,18 

|(σc)i| ≤ 20 Ksi;           i=1,2,…,18 

Constraint data 

Euler buckling stress constraints 

|(σc)i| ≤ αAi E/Li
2
, α=4;           i=1,2,…,18 

Side constraints of geometry variables 
775 in ≤ x3 ≤ 1225 in 

-225 in ≤ y3 ≤ 245 in 

525 in ≤ x5 ≤ 975 in 

-225 in ≤ y5 ≤ 245 in 

275 in ≤ x7 ≤ 725 in 

-225 in ≤ y7 ≤ 245 in 

25 in ≤ x9 ≤ 475 in 

-225 in ≤ y9 ≤ 245 in 

Ai є S={2.00, 2.25, …, 21.50, 21.75}in
2
           

List of the available 

profiles  
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Table 9: The optimization results of the size and geometry of eighteen-bar truss 

Present work Kang and 

Zong [25] Yang [24] Rajeev and 

Krishnamoorthy [23] 
Design variables 

12.50 12.65 12.61 12.50 A1 

Size variables 

(in
2
) 

17.50 7.22 18.10 16.25 A2 

5.75 6.17 5.47 8.00 A3 

3.75 3.55 3.54 4.00 A5 

907.2491 903.10 914.50 891.90 x3 

Geometry 

variables (in) 

179.8672 174.30 183.00 145.30 y3 
636.7873 630.30 647.00 610.60 x5 
141.8272 136.30 147.40 118.20 y5 
407.9442 402.10 414.20 385.40 x7 
94.05591 90.50 100.40 72.50 y7 

198.7897 195.30 200.00 184.40 x9 

29.5158 30.60 31.90 23.40 y9 

4512.262 4515.6 4552.80 4616.80 Weight (Ib) 

 
Table 10: The stresses of the elements of eighteen-bar truss 

Stress (Ib/in
 2
) Member Stress (Ib/in

 2
) Member 

-12808 10 7819.47 1 

-6906.20 11 -5701.06 2 
19168.13 12 -5767.01 3 
1753.73 13 9935.48 4 

-14608.41 14 11214.86 5 
-4395.81 15 -9383.01 6 
19999.99 16 -9347.36 7 

19911.73 17 16116.99 8 

-17330.79 18 6103.33 9 

 

 

 
Figure 12. The optimum geometry of eighteen-bar truss 
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Figure 13. The weight convergence process of eighteen-bar truss 

 

7.3 Fifteen-bar truss 

A fifteen-bar truss as Fig. 14 has been considered. The data to design truss has been shown 

in Table 11. Modulus of elasticity of the material is 10000 ksi and the specific weight is 0.1 

Ib/in3. The results of size and geometry optimization of the truss have been compared with 

other references in Table 12. The stresses of the elements have been shown in Table 13. The 

optimum geometry of the truss has been shown in Fig. 15. Also, the convergence process of 

truss weight has been shown in Fig. 16. 

 

 
Figure 14. Fifteen-bar truss 

 
Table 11: The data to design fifteen-bar truss 

Node          Fx (Kips)            Fy (Kips)            Fz (Kips)  
8                0                         -10                     0 

Loading data 

Size variables 
A1; A2; A3; A4; A5; A6; A7; A8; A9; A10; A11; A12; A13; A14; A15 Design variables 
Geometry variables 
 x2= x6; x3=x7; y2;y3;y4;y6;y7;y8 
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Stress constraints 
(σt)i ≤ 25 Ksi;              i=1,2,…,15 

|(σc)i| ≤ 25 Ksi;           i=1,2,…,15 

Constraint data 

Side constraints of geometry variables 
100 in ≤ x2 ≤ 140 in 

220 in ≤ x3 ≤ 260 in 

100 in ≤ y2 ≤ 140 in 

100 in ≤ y3 ≤ 140 in 

50 in ≤ y4 ≤ 90 in 

-20 in ≤ y6 ≤ 20 in 

-20 in ≤ y7 ≤ 20 in 

20 in ≤ y8 ≤ 60 in 
Ai є S={0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 

0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 

3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 

14.29, 17.17, 19.18}in
2
           

List of the available 

profiles 

 
Table 12: The optimization results of the size and geometry of fifteen-bar truss 

Present work Tang et al 

[28] 
Hwang and 

He [27] 
Wu and 

Chow [26] 
Design variables 

1.081 1.081 0.954 1.174 A1 

Size variables 

(in
2
) 

0.539 0.539 1.081 0.954 A2 
0.27 0.287 0.44 0.44 A3 

0.954 0.954 1.174 1.333 A4 
0.954 0.954 1.488 0.954 A5 
0.22 0.22 0.27 0.174 A6 

0.111 0.111 0.27 0.44 A7 
0.111 0.111 0.347 0.44 A8 
0.27 0.287 0.22 1.081 A9 

0.287 0.22 0.44 1.333 A10 

0.44 0.44 0.22 0.174 A11 

0.287 0.44 0.44 0.174 A12 

0.141 0.111 0.347 0.347 A13 

0.27 0.22 0.27 0.347 A14 

0.27 0.347 0.22 0.44 A15 

123.5286 133.612 118.346 123.189 x2 

Geometry 

variables (in) 

239.1095 234.752 225.209 231.595 x3 
123.7912 100.449 119.046 107.189 y2 
115.2112 104.738 105.086 119.175 y3 

72.968 73.762 63.375 60.462 y4 
-8.153 -10.067 -20.0 16.728 y6 

3.8959 -1.339 -20.0 15.565 y7 

42.6028 50.402 57.722 36.645 y8 

79.8065 79.82 104.573 120.52 Weight (Ib) 
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Table 13: The stresses of the elements of fifteen-bar truss 

Stress (Ib/in
 2
) Member Stress (Ib/in

 2
) Member 

19291.09 9 23249.16 1 

24498.17 10 24547.4 2 
-23161.28 11 22192.73 3 
23733.03 12 -23953 4 
-24216.56 13 -16427.66 5 
22481.39 14 -24835.33 6 
-24129.05 15 5040.43 7 

  -14690.79 8 

 

 
Figure 15. The optimum geometry of fifteen-bar truss 

 

 
Figure 16. The weight convergence process of fifteen-bar truss 

7.4 Thirty nine-bar truss 

A thirty nine-bar truss as Fig. 17 has been considered. The bottom and top nodes are fixed 

while all the intermediate node positions will be redesigned. The coordinates of three bottom 

nodes 1, 2, 3 and three top nodes 13, 14 and 15 have been shown in Table 14. The grouping 

of truss elements as the size variables has been shown in Table 15. The data to design truss 
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has been shown in Table 16. Modulus of elasticity of the material is 210 Gpa and the 

specific weight is 7800 kg/m3. The results of size and geometry optimization of the truss 

have been compared with other references in Table 17. The stresses of the elements have 

been shown in Table 18. The displacements of truss nodes have been shown in Table 19. 

The optimum geometry of the truss has been shown in Fig. 18. Also, the convergence 

process of truss weight has been shown in Fig. 19. 

 

 
Figure 17. Thirty nine-bar truss 

 
Table 14: The coordinates of truss fixed nodes for thirty nine-bar truss 

z(m) y(m) x(m) Node 
0 1 0 1 

0 -0.5 −
√3

2
 2 

0 -0.5 √3

2
 3 

4 0.28 0 13 

4 -0.14 −
0.42

√3
 14 

4 -0.14 
0.42

√3
 15 
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Table 15: The grouping of truss elements for thirty nine-bar truss 

Members (end nodes) Group 
1(1,4), 2(2,5), 3(3,6) A1 

4(4,7), 5(5,8), 6(6,9) A2 

7(7,10), 8(8,11), 9(9,12) A3 

10(10,13), 11(11,14), 12(12,15) A4 

Rest of the elements A5 

 
Table 16: The data to design thirty nine-bar truss 

Node         Fx (KN)            Fy (KN)            Fz (KN) 
13              0                      10                     0 

14              0                      10                     0 

15              0                      10                     0 

Loading data 

Size variables 
A1; A2; A3; A4; A5 Design variables 
Geometry variables 
y4; z4; y7; z7; y10; z10 

Stress constraints 
(σt)i ≤ 240 Mpa;              i=1,2,…,39 

|(σc)i| ≤ 240 Mpa;           i=1,2,…,39 

Constraint data 

Displacement constraints of node13 in direction y 

|Δy,13| ≤ 4 mm;                   

Side constraints of geometry variables 
0.28m ≤ y4 ≤ 1m 

0 ≤ z4 ≤ 2m 

0.28m ≤ y7 ≤ 1m 

1m ≤ z7 ≤ 3m 

0.28m ≤ y10 ≤ 1m 

2m ≤ z10 ≤ 4m 
Ai є S={0.1, 0.2, 0.3, …, 13}cm

2
           List of the available profiles 

 
Table 17: The optimization results of the size and geometry of thirty nine-bar truss 

Present work Wang et al [29] Design variables 
12.7 11.01 A1 

Size variables 

(cm
2
) 

10.4 8.63 A2 
7.2 6.69 A3 
3.3 4.11 A4 
1.7 4.37 A5 

0.8894 0.805 y4 

Geometry 

variables (m) 

1.3405 1.186 z4 
0.6816 0.654 y7 
2.312 2.204 z7 

0.4824 0.466 y10 
3.3029 3.092 z10 

137.826 203.18 Weight (kg) 
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Table 18: The stresses of the elements of thirty nine-bar truss 

Stress (kg/cm
2
) Member Stress (kg/cm

2
) Member 

251.66 21 -567.45 1 

17.92 22 283.74 2 
251.66 23 283.74 3 
17.92 24 -535.83 4 

-429.24 25 267.89 5 
-429.24 26 267.89 6 
438.43 27 -557.11 7 

-9.59 28 278.62 8 

438.43 29 278.62 9 

-9.59 30 -483.88 10 

-552.56 31 241.99 11 

-552.56 32 241.99 12 

624.65 33 -379.70 13 

-72.02 34 -379.70 14 
624.65 35 557.91 15 
-72.02 36 -178.43 16 

-200.87 37 557.91 17 
-200.87 38 -178.43 18 
401.75 39 -269.32 19 

  -269.32 20 

 
Table 19: The displacements of truss nodes for thirty nine-bar truss 

∆z (cm) ∆y (cm) ∆x (cm) Node 
0.0000 0.0000 0.0000 1 

0.0000 0.0000 0.0000 2 

0.0000 0.0000 0.0000 3 

-0.0272 0.1119 0.0000 4 

0.0136 0.0494 0.0360 5 

0.0136 0.0494 -0.0360 6 

-0.0442 0.1538 0.0000 7 

0.0221 0.1902 -0.0210 8 

0.0221 0.1902 0.0210 9 

-0.0416 0.3027 0.0000 10 

0.0208 0.2558 0.0271 11 

0.0208 0.2558 -0.0271 12 

-0.0308 0.3998 0.0000 13 

0.0154 0.4000 -0.0046 14 

0.0154 0.4000 0.0046 15 
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Figure 18. The optimum geometry of thirty nine-bar truss 

 

 
Figure 19. The weight convergence process of thirty nine-bar truss 

 

7.5 Forty seven-bar truss 

A forty seven-bar truss as Fig. 20 has been considered. The data to design truss has been 

shown in Table 20. Modulus of elasticity of the material is 30000 ksi and the specific weight 

is 0.3 Ib/in3. The results of size and geometry optimization of the truss have been compared 

with other references in Table 21. The stresses of the elements have been shown in Table 22. 

The optimum geometry of the truss has been shown in Fig. 21. Also, the convergence 

process of truss weight has been shown in Fig. 22. 
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Figure 20. Forty seven-bar truss 

 
Table 20: The data to design forty seven-bar truss 

Node         Fx (Kips)            Fy (Kips)            Fz (Kips)  

17              6                         -14                     0 

22              6                         -14                     0 

Loading data 

Size variables 

A3= A1; A4=A2; A5= A6; A7; A8= A9; A10; A12= A11;  

A14= A13; A15= A16; A18= A17; A20= A19; A22= A21; A24= A23; 

A26= A25; A27; A28; A30= A29; A31= A32; A33; A35= A34; A36= 

A37; A38; A40= A39; A41= A42; A43;  

A45= A44; A46= A47 

Design variables 

Geometry variables 

 x2=-x1; x4=-x3; y4=y3; x6=-x5; y6=y5; x8=-x7; y8=y7;  

 x10=-x9; y10=y9; x12=-x11; y12=y11; x14=-x13; y14=y13; 
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 x20=-x19; y20=y19; x21=-x18; y21=y18 

Stress constraints 

(σt)i ≤ 20 Ksi;              i=1,2,…,47 

|(σc)i| ≤ 15 Ksi;           i=1,2,…,47 

Constraint data 

Euler buckling stress constraints 

|(σc)i| ≤ αAi E/Li
2
, α=3.96;           i=1,2,…,47 

Side constraints of geometry variables 

0 ≤ x2 ≤ 150 in 

0 ≤ x4 ≤ 150 in 

0 ≤ y4 ≤ 240 in 

0 ≤ x6 ≤ 150 in 

120 in ≤ y6 ≤ 360 in 

0 ≤ x8 ≤ 150 in 

240 in ≤ y8 ≤ 420 in 

0 ≤ x10 ≤ 75 in 

360 in ≤ y10 ≤ 480 in 

0 ≤ x12 ≤ 75 in 

420 in ≤ y12 ≤ 540 in 

0 ≤ x14 ≤ 75 in 

480 in ≤ y14 ≤ 600 in 

0 ≤ x20 ≤ 75 in 

540 in ≤ y20 ≤ 660 in 

0 ≤ x21 ≤ 150 in 

540 in ≤ y21 ≤ 660 in 
Ai є S={0.1, 0.2, 0.3, …, 5.0}in

2
           List of the available profiles 

 
Table 21: The optimization results of the size and geometry of forty seven-bar truss 

Present 

work 
Hansen and 

Vanderplaats [32] 
Salajegheh and 

Vanderplaats [31] 
Hasancebi and 

Erbatur [30] 
Design variables 

2.70 2.42 2.61 2.50 A3 

Size variables 

(in
2
) 

2.50 2.35 2.56 2.20 A4 

0.70 0.82 0.69 0.70 A5 

0.10 0.10 0.47 0.10 A7 

0.90 0.86 0.80 1.30 A8 

1.10 1.15 1.13 1.30 A10 

1.80 1.77 1.71 1.80 A12 

0.70 0.67 0.77 0.50 A14 

0.90 0.86 1.09 0.80 A15 

1.30 1.24 1.34 1.20 A18 

0.30 0.33 0.36 0.40 A20 

1.10 1.22 0.97 1.20 A22 

1.00 0.93 1.00 0.90 A24 

0.90 0.86 1.03 1.00 A26 

0.80 0.69 0.88 3.60 A27 

0.10 0.15 0.55 0.10 A28 

2.70 2.46 2.59 2.40 A30 

0.80 0.90 0.84 1.10 A31 

0.10 0.10 0.25 0.10 A33 
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3.00 2.74 2.86 2.70 A35 

0.90 0.92 0.92 0.80 A36 

0.10 0.1 0.67 0.10 A38 

3.20 2.94 3.06 2.80 A40 

1.00 1.13 1.04 1.30 A41 

0.10 0.10 0.10 0.20 A43 

3.30 3.12 3.13 3.00 A45 

1.20 1.10 1.12 1.20 A46 

100.9724 107.10 107.76 114.00 x2 

Geometry 

variables (in) 

80.4772 91.20 89.15 97.00 x4 
136.8699 122.80 137.98 125.00 y4 
64.3908 74.20 66.75 76.00 x6 

247.0491 241.40 254.47 261.00 y6 
55.2589 65.50 57.38 69.00 x8 

338.4534 324.60 342.16 316.00 y8 

48.7333 57.10 49.85 56.00 x10 

409.738 400.40 417.17 414.00 y10 

43.4742 49.30 44.66 50.00 x12 

472.1479 472.30 475.35 463.00 y12 

44.8349 47.40 41.09 54.00 x14 

512.1903 507.50 513.15 524.00 y14 

3.8416 3.90 17.90 1.00 x20 

591.1449 586.50 597.92 587.00 y20 

84.50416 83.30 93.54 99.00 x21 

630.3472 636.00 623.94 631.00 y21 

1860.161 1850.4 1900.00 1925.79 Weight (Ib) 

 
Table 22: The stresses of the elements of forty seven-bar truss 

Stress (Ib/in
 2
) Member Stress (Ib/in

 2
) Member Stress (Ib/in

 2
) Member 

4712.87 33 -14980.40 17 2333.29 1 

5644.96 34 -10016.58 18 791.45 2 

-14885.74 35 -4489.07 19 -12931.78 3 

3728.92 36 19865.83 20 -10973.86 4 

-4488.52 37 -9476.08 21 8021.24 5 

-444.23 38 -14644.85 22 -6709.07 6 

6299.89 39 12584.71 23 8073.72 7 

-14991.32 40 19449.1 24 4487.23 8 

959.16 41 12938.38 25 -11371.45 9 

-1750.75 42 19995.67 26 -14278.88 10 

4377.84 43 18745.22 27 -13684.85 11 

6506.11 44 -1248.42 28 -14414.45 12 

-14998.30 45 4510.74 29 12992.18 13 

581.01 46 -14885.74 30 -4257.07 14 

-975.10 47 5019.47 31 -3472.72 15 

  -5976.77 32 11865.98 16 
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Figure 21. The optimum geometry of forty seven-bar truss 

 

 
Figure 22. The weight convergence process of forty seven-bar truss 
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8. CONCLUSION 
 

In this research, the combination of DNA computing algorithm and Generalized Convex 

Approximation (GCA) method has been used to optimize the size and geometry of truss 

structures under the constraints such as axial stresses of the elements, displacements in the 

degrees of freedom of truss nodes and slenderness ratios of the elements. 

In this way, at the first stage by selecting appropriate and similar cross sections for truss 

elements, the coordinates of truss nodes as continuous variables have been optimized by 

Generalized Convex Approximation (GCA) method. Then, at the second stage with 

achieved coordinates from the first stage and by using DNA computing algorithm, the cross-

section areas of the elements as discrete variables have been optimized. 

According to the achieved results from numerical examples and comparing them with 

different references, it is concluded that the combination of DNA computing algorithm and 

Generalized Convex Approximation (GCA) method is an appropriate method to optimize 

truss structures. 
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