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ABSTRACT 
 

Damage assessment is one of the crucial topics in the operation of structures. Multiplicities of 

structural elements and joints are the main challenges about damage assessment of space 

structure. Vibration-based damage evaluation seems to be effective and useful for application 

in industrial conditions and the low-cost. A method is presented to detect and assess structural 

damages from changes in mode shapes. First, the mechanism of using two-dimensional 

continuous wavelet transform is applied for damage localization. Second, finite element model 

updating technique is utilized as an inverse optimization problem by applying the charged 

system search algorithm to assess the damage in each element sited in the first stage. The 

study indicates the potentiality of the developed code to assess the damages of space structures 

without concerning about the size and shape of structure. A series of numerical examples with 

different damage scenarios have been carried out in the double layer space structures and the 

results confirm the reliability and applicability of introduced method. 
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1. INTRODUCTION 
 

Damage detection using structural modal identification methods is based on the premise that 

damage is manifested as a loss of effective stiffness over one or more regions of the 

structure. These damages may endanger structure’s integrity and functionality and need to 

be accurately detected [1]. 

Vibration based Structural Health Monitoring (SHM) became an interesting research 

topic in structural mechanics around 30 years ago. Vibration methods are based on the fact 
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that the reduction of stiffness due to damage affects the dynamic response of structure. 

Alteration of the vibration characteristics of the structure, such as the natural frequency, 

displacement, mode shapes and damping ratios are signs to observe the damage in the 

structure [2]. 

Vibration based methods are typified by Fourier transform [3,4], wavelet transform [5,6], 

time-frequency analysis [7,8], and intelligent computation [9]. Wavelet transform 

background comes from the beginning of the last century [10], and its development as an 

engineering signal processing analysis tool for SHM is rather new [11]. Wavelet analysis is 

an efficient methodology which has found wide applications in structural health monitoring 

(SHM) problems. Wavelet transform is mainly attractive because of its ability to compress 

and encode information, to reduce noise, or to detect any local singular behavior of a signal. 

Wavelet-based methods have been applied by researchers for detection and localization 

of damages in one-dimensional structural parts (beams) [12-14] and 2D plane problems 

(plate) [15-18].  

An appropriate feature must be sensitive enough to damage, but rather insensitive to 

environmental and operational effects; hence, selecting a suitable damage indicator feature is a 

major issue in this approach. The literatures about the vibration based damage identification 

methods are abundant and several damages sensitive features have been proposed in the 

previous research [19-21]. Among different structural responses that can be used as measures 

of structural damage, modal parameters enjoy the benefit of being independent of external 

excitation [22]. If a modal analysis is performed, then wavelet analysis can be applied to mode 

shapes or their derivatives to detect changes induced by damage. 

Space structures, which enable the designers to cover large spans as sports stadiums, 

assembly halls, exhibition centers, swimming pools, shopping centers and industrial 

buildings have been widely applied by structural and architectural engineers in the recent 

decades. According to the application of structure, various types of space frames like 

geodesic dome, double layer grid and pyramid could be designed. In the prior methods 

introduced by other researchers for damage detection of truss like structures, size of 

structure, differences in geometric patterns and verity of shape were the key problems to 

limit the application of these methods [1,23-25]. 

To reduce the computational costs and time, the mechanism of using two dimensional 

continuous wavelet transform (2D- CWT) is applied by exploiting the concept of simulating 

the mode shape of space structure to a 2D spatially distributed signal for damage localization 

of space structure [2]. 

In the last few decades, techniques based on finite element model updating (FEMU) have 

been widely developed for vibration-based damage detection. The basic idea is to change the 

properties of the numerical model to fit the values provided by experimental data, 

identifying damaged regions and the extent of damage on the structure. In other words, the 

optimization algorithm seeks the optimal reduction factors of element's stiffness to achieve a 

predefined performance in terms of the modal parameters defined by the experimental data 

[26]. SR Shiradhonkar and M. Shrikhande [27] used the frequency-domain decomposition 

and empirical transfer function estimates to identify the modal parameters. They found that a 

combination of system identification techniques with sensitivity based finite element model 

updating can potentially locate and quantify the damage in a moment resistant frame. YZ Fu, 

et al. [28] used the inverse response sensitivity- based finite element model updating 
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approach with the penalty function method with Tikhonov regularization to identify local 

damages of the plate in the time domain. A Majumdar, et al. [23] formulate the inverse 

problem in terms of optimization and utilized a solution technique employing ant colony 

optimization to detect and assess structural damages from changes in natural frequencies. 

The developed code is used to assess damages of truss like structures using first few natural 

frequencies. An improvement in the hybrid Pincus-Nelder-Mead optimization algorithm (P-

NMA) which enables to solve the target optimization problem of vibration-based damage 

detection is proposed by [29], and the results of a beam modeled with 25 finite elements 

were compared to those obtained by the P-NMA and the meta heuristic harmony search 

algorithm. ZH Ding, et al. [24] used artificial bee colony algorithm with hybrid search 

strategy based on an objective function established in the frequency domain for damage 

detection on a truss and plate structures. SM Seyedpoor [25] proposed a two-stage method 

of determining the location and extent of multiple structural damages. First, the damage is 

located using the concept of modal strain energy and second; the particle swarm 

optimization is utilized to determine the extent of damaged elements. The method is 

assessed by a planar truss with 31 elements. 

This paper presents a framework for SHM and damage assessment of space structure. In 

the first stage, the mechanism of using 2D- CWT is applied for damage localization of space 

structure [2]. In the second stage, finite element model updating (FEMU) technique is 

utilized as an inverse optimization problem by applying the charged system search (CSS) 

algorithm [30] to assess the amount of damage of each element sited in the first stage. 

Numerical results show the high efficiency of the proposed method for accurately 

identifying the extent of multiple structural damages. 

 

 

2. THEORETICAL BACKGROUND 
 

2.1 Two-dimensional continuous wavelet transform 

Wavelet analysis provides a powerful tool to characterize the local features of a signal. 

Unlike the Fourier transform, where the function used as the basis of decomposition is 

always a sinusoidal wave, other basis functions can be selected for wavelet shape according 

to the features of the signal. 

The two-dimensional CWT (2D-CWT) is a natural extension of the one-dimensional 

CWT, with the translation parameter being a vector in the plane. As in the 1D case, a 2D 

wavelet is an oscillatory, real or complex-valued function 𝜓 𝑥  𝜖 𝐿2(𝑅2,𝑑2𝑥 ) satisfying the 

admissibility condition on real plane 𝑥  𝜖 𝑅2, 𝐿2(𝑅2,𝑑2𝑥 ) denotes the Hilbert space of 

measurable, square integrable 2D functions on the plane. If 𝜓 is regular enough as in most 

cases, the admissibility condition can be expressed as: 

 

𝜓(0  ) = 0 ⟺ 𝜓 𝑥  𝑑2𝑥 = 0
𝑅2

 (1) 

 

Function 𝜓 𝑥   is called mother wavelet and usually localized in both the position and 

frequency domains. The mother wavelet 𝜓 can be transformed in the plane to generate a 
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family of wavelet 𝜓𝑎 ,𝑏  ,𝜃
 𝑥  . A transformed wavelet 𝜓𝑎 ,𝑏  ,𝜃

 𝑥   under translation by a vector 

𝑏  , dilation by a scaling factor 𝑎, and rotation by an angel 𝜃 can be derived as [31]: 

 

𝜓𝑎 ,𝑏  ,𝜃
 𝑥  = 𝑎−1𝜓 𝑟−𝜃  

𝑥 − 𝑏  

𝑎
    𝑎 > 0,  𝑏   ,𝜃𝜖𝑅2 (2) 

 

Given a 2D signal 𝑓(𝑥 )𝜖𝐿2(𝑅2,𝑑2𝑥 ), its 2D-CWT (with respect to the wavelet 𝜓) 

𝑊𝑓 𝑎, 𝑏  , 𝜃  is the scalar product of 𝑓(𝑥 ) with the transformed wavelet 𝜓𝑎 ,𝑏  ,𝜃  and 

considered as a function of  𝑎, 𝑏  , 𝜃  as: 

 

Wf a, b  , θ =  f,ψa,b   ,θ
 =

1

 a
 f(x  )ψ∗ r−θ  

x  − b  

a
  d2x  

+∞

−∞

 (3) 

 

where the 𝜓∗ denotes the complex conjugate and 𝑟−𝜃  is the 2D rotation matrix as: 

 

r−θ =  
cos θ      − sin θ 

sin θ          cos⁡(θ)
  (4) 

 

The 2D-CWT is a space scale representation of a plane and acts as a local filter with 

scale and position. If the wavelet is isotropic, there is no dependence on angle in the 

analysis. The Mexican hat wavelet is an example of an isotropic wavelet. Isotropic 

wavelets are suitable for point wise analysis of a 2D system. If the wavelet is 

anisotropic, there is a dependence on angle in the analysis, and the 2D-CWT acts a local 

filter with scale, position, and angle. The morlet wavelet is an example of an anisotropic 

wavelet. In the Fourier domain, this means that the spatial frequency support of the 

wavelet is a convex cone with the apex at the origin. Anisotropic wavelets are suitable 

for detecting directional feature. 

The point wise nature of the 2D damage detection in the space structure is made the 

isotropic wavelets suitable for this kind of structure. The chosen wavelet function is 

isotropic Mexican hat wavelet, and the scaled is equal to 2. Wavelet computation is 

performed using MATLAB code. 

The denoising and filtering capability of the isotropic 2D-CWT provides us with an 

important analysis tool in practice. The Mexican hat wavelet is real and isotropic. The 

1D Mexican hat wavelet is the second derivative of the Gaussian function. Likewise, the 

2D Mexican hat wavelet is the Laplacian of the 2D Gaussian function. It was first 

proposed by EC Hildreth [32] as a differential-smooth operator for their edge contours 

detection theory. Its expression in the position domain is given as follows [15]: 

 

ψ x   =  2 −  x   2 exp  −
1

2
 x   2  (5) 
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2.2 Charged system search algorithm 

The Charged System Search (CSS) algorithm is based on the Coulomb and Gauss laws from 

electrical physics and the governing laws of motion from the Newtonian mechanics. This 

algorithm can be considered as a multi-agent approach, where each agent is a Charged 

Particle (CP). In this section, CSS is represented briefly. The CSS algorithm can be 

summarized as follows: 

Level 1. Initialization 

Step 1. Initialization. The initial positions of CPs are determined randomly in the search 

space as: 
 

𝑥𝑖 ,𝑗
(0)

= 𝑥𝑖 ,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑.  𝑥𝑖 ,𝑚𝑎𝑥 − 𝑥𝑖 ,𝑚𝑖𝑛  , 𝑖 = 1, 2,… ,𝑛 (6) 

 

where 𝑥𝑖 ,𝑗
(0)

 determines the initial value of the ith variable for the jth CP; 𝑥𝑖 ,𝑚𝑖𝑛  and 𝑥𝑖 ,𝑚𝑎𝑥  are 

the minimum and the maximum allowable values for the ith variable; rand is a random 

number in the interval [0,1]; and n is the number of variables. The initial velocities of 

charged particles are set to zero 
 

𝑣𝑖 ,𝑗
(0)

= 0,     𝑖 = 1, 2,… ,𝑛 (7) 

 

The magnitude of the charge is defined considering the quality of its solution, as follows: 
 

qi =
fit i − fitworst

fitbest − fitworst
      i = 1,2,3… . . , N (8) 

 

where fitbest and fitworst are the so far best and the worst fitness of all particles; fit(i) 

represents the objective function value or the fitness of the agent i; and N is the total number 

of CPs. The separation distance 𝑟𝑖𝑗  between two charged particles is defined as follows: 

 

rij =
 𝐗i − 𝐗j 

  𝐗i − 𝐗j 2 − 𝐗best  + ε
 (9) 

 

where 𝐗i and 𝐗j are the positions of the ith and jth CPs, 𝐗best  is the position of the best 

current CP, and ε is a small positive number to avoid singularities. 

Step 2. CP ranking. Evaluate the values of the fitness function for the CPs, compare with 

each other and sort them in an increasing order. 

Step 3. CM creation. Store the number of the first CPs equal to charged memory size 

(CMS) and their related values of the fitness functions in the charged memory (CM). 

Level 2. Search 

Step 1. Attracting force determination. Determine the probability of moving ith CP 

toward the jth CP is expressed by the following probability function: 
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pij =  1           
fit i − fitbest

fit j − fit i 
> 𝑟𝑎𝑛𝑑 ∨ 𝑓𝑖𝑡 j > 𝑓𝑖𝑡 i 

0                                                               otherwise

    (10) 

 

The value of the resultant electrical force acting on a CP is determined as: 

 

𝐅j = qi   
qi

a3
rij . i1 +

qi

rij
2 . i2 pij 𝐗i − 𝐗j 

i,i≠j

        

j = 1, 2,… . , N                    
i1 = 1,   i2 = 0 ⇔ rij < 𝑎

i1 = 0,   i2 = 1 ⇔ rij ≥ a

         (11) 

 

where 𝑞𝑖  the volume charge density of the jth particle and it has a value between 0 and 1; 𝑭𝑗  

is the resultant force acting on the jth CP; 𝑟𝑖𝑗  is the separation distance between two charged 

particles which is defined as Eq. 12. 

Step 2. Solution construction. Move each CP to the new position and find its velocity 

using the following equations: 

 

𝑿𝑗 .𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑𝑗1.𝑘𝑎 .
𝑭𝑗
𝑚𝑗

△ 𝑡2 + 𝑟𝑎𝑛𝑑𝑗2. 𝑘𝑣 .𝑽𝑗 .𝑜𝑙𝑑 △ 𝑡 + 𝑿𝑗 .𝑜𝑙𝑑  (12) 

𝑽𝑗 .𝑛𝑒𝑤 =
𝑿𝑗 .𝑛𝑒𝑤 − 𝑿𝑗 .𝑜𝑙𝑑

△ 𝑡
 (13) 

 

where 𝑘𝑎  is the acceleration coefficient; 𝑘𝑣 is the velocity coefficient to control the influence 

of the previous velocity; and 𝑟𝑎𝑛𝑑𝑗1 and 𝑟𝑎𝑛𝑑𝑗2 are two random numbers uniformly 

distributed in the range of (0,1). △ 𝑡 is the time step and set to unity. 𝑘𝑎  and 𝑘𝑣 are defined 

as: 

 

𝑘𝜈 = 0.5 1 − 𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  𝑘𝑎 = 0.5(1 + 𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ) (14) 

 

where iter is the actual iteration number and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations. 

Step 3. Modification of CP position. If each CP violates from its allowable boundary, its 

position is corrected as fallow: 

 

𝑥𝑖 ,𝑗 =

 
 

 
𝑤. 𝑝.𝐶𝑀𝐶𝑅              ⟹ 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝐶𝑀,

         ⟹𝑤.𝑝.  1 −  𝑃𝐴𝑅 𝑑𝑜 𝑛𝑜𝑡𝑕𝑖𝑛𝑔,
                            ⟹𝑤. 𝑝.𝑃𝐴𝑅 𝑐𝑕𝑜𝑜𝑠𝑒 𝑎 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒,

 𝑤.𝑝.  1 −  𝐶𝑀𝐶𝑅 ⟹  𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦,                         

             (15) 

 

where “w.p.” is the abbreviation for “with the probability”; 𝑥𝑖 ,𝑗  is the ith component of 

the CP j; The CMCR (the Charged Memory Considering Rate) varying between 0 and 1 sets 

the rate of choosing a value in the new vector from the historic values stored in the CM, and 

(1 − CMCR) sets the rate of randomly choosing one value from the possible range of values. 

The pitch adjusting process is performed only after a value is chosen from CM. The value 

(1−PAR) sets the rate of doing nothing, and PAR sets the rate of choosing a value from 

neighboring the best CP. 
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Step 4. CP ranking. Evaluate and compare the values of the fitness function for the new 

CPs, and sort them in an increasing order. 

Step 5. CM updating. If some new CP vectors are better than the worst ones in the CM 

(means CPs with better merit function), include the better vectors in the CM and exclude the 

worst ones from the CM. 

Level 3. Controlling the terminating criterion. Repeat the search level steps until a 

terminating criterion is satisfied. The terminating criterion is considered to be the number of 

iterations. 

 

 

3. METHOD 
 

In the present section the hybrid 2D-CWT and finite element model updating method is 

presented with the simulation of structural response data. First, the finite-element model 

considerations and structural response data achievement will be shown. Then, the isosurface 

of first displacement mode shape on (𝑥, 𝑦) plane will be generated. Finally, the effectiveness 

of the proposed method for damage detection of space structures will be evaluated by 

applying on three types of space frames.  

Step 2. Generating isosurface 

First of all, the geometric pattern of space structure is modified using Formian software. 

the modified geometric pattern is analyzed by SAP2000 and truss element cross sections is 

designed according to the LRFD AISC [33]. the open-source finite-element package 

Opensees is used to perform an eigenvalue analysis and compute the mode shapes of the 

intact and damaged structures. 

 Secondly, the MATLAB code is written to import the displacement values of normal 

modes from modal analysis. The generated isosurface 𝑓(𝑥 ) can be directly used to indicate 

the location and area of the damage. In practice, this could be verified by observing that the 

natural frequencies and mode shapes of the structure are not drastically changed after the 

damage imposing event.  

The 2D-CWT is implemented in MATLAB to the modified isosurface [2]. In the wavelet 

base damage detection methods, researchers always face with two main problems of 

boundary distortion and noise effects. To deal with boundary distortion, the mode shape data 

is extended beyond its original boundary by the cubic spline extrapolation based on points 

near the boundaries [15] and the noise effect of proposed wavelet analyses is treated by 

calculating the absolute difference values of wavelet coefficients derived from 2D-CWT 

analysis of intact and damaged structure as [34,35]: 

 

D x   =  Wfa − Wfd   (16) 

 

where 𝑊𝑓𝑎  and 𝑊𝑓𝑑  are the 2D-CWT coefficients of intact and damaged space structure 

respectively. Finally by plotting the isosurface of 𝐷 𝑥   values, location and area of the 

damage can be defined. 

Step 5. Finite element model updating 

Finite element model updating technic is applied by employing the CSS algorithm to 

identify the damaged elements and define the severity of damage among the elements in the 
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located region in previous step by diminishing the objective function. The objective function 

is formulated through the difference between the measured date of damaged structure and 

calculated data from the analytical model as [36]: 
 

E =  ηi  
ωi

m − ωi
calc

ωi
m  + ϖ  1 − diag(MACi) 

N

i=1

N

i=1

 (17) 

 

where E is the objective function, 𝜔𝑖
𝑚  and 𝜔𝑖

𝑐𝑎𝑙𝑐  are the natural frequencies of damaged 

structure and analytical model, 𝜛 and 𝜂𝑖  are the weight factors of mode shape and natural 

frequency respectively. The subscripts i, denote the orders of the modes. The modal 

assurance criterion (MAC) is used for diagnosing global changes in vibration characteristics 

of a structure which can be computed as:  
 

MACi =
 ϕi

m T
ϕi

calc  
2

 ϕi
m T

ϕi
m  ϕi

calc T
ϕi

calc  
 (18) 

 

where 𝜙𝑖
𝑚  and 𝜙𝑖

𝑐𝑎𝑙𝑐  denote the modal vectors obtained from a damaged structure and analytical 

model, respectively. The subscripts i, denote the orders of the modes; and the superscript T, 

denotes the transpose of a vector. The damage is simulated in analytical model by diminishing 

the Young’s modulus of elements in the damaged region located in previous step. 

According to the step 4, almost 30 numbers of elements can be selected in a region with 

100 centimeter radius around the local extremums in a double layer space structure. 

Abundance of selected elements may challenge to achieve an acceptable convergence, and 

it’s necessary to decrease the number of elements as much as possible. In the proposed 

method, a loop is designed to eliminate the elements with 10% or less damage according to 

the results of CSS algorithm. The Flowchart of proposed method is plotted in Fig. 1. 

 

 
Figure 1. Flowchart of the proposed damage assessment algorithm 



APPLICATION OF FINITE ELEMENT MODEL UPDATING FOR DAMAGE … 

 

283 

3. NUMERICAL EXAMPLES AND RESULTS 
 

In order to show the capabilities of the proposed approach for identifying multiple structural 

damages, three illustrative type of space structures with nine different damage scenarios are 

considered. 

Space Structure consists of steel truss elements (tubular part) and connectors (ball joint). 

The MERO jointing system is a multidirectional system allowing up to fourteen tubular 

members to be connected together at various angles. In a double-layer space structure, the 

ball joint system can be subjected to tension or compressive axial forces. The system 

consists of tubular elements that connected together by MERO jointing system. Details of 

connecting system and MERO ball joints are shown in Fig. 2. 

 

 
Figure 1. (a) MERO jointing system with four tubular elements; (b) member of the double layer 

grid; (c) details of the MERO jointing system 

 

According to step one, a three phases design procedure is implemented to perform an 

eigenvalue analysis to calculate the mode shapes of space frames. The programming 

language Formian is utilized to create the polyhedric configuration of space frames, 

including node coordinates. The outcome geodesic forms of space frames are exported to 

SAP2000. The general views of selected space frames in SAP2000 are depicted in Fig.3.  
Geometric properties of introduced double layer diamatic dome, double layer grid and 

double layer pyramid are illustrated in Table 1. 

In the second step, the imported geometric data in SAP2000 is exploited to design 

structural elements. It is assumed that tubular part has uniform area and material properties 

along its length. This part is modeled well enough using beam element and constructed from 

the components which are generally utilized in practice with the modulus of elasticity 

𝐸 = 200 K𝑁/m𝑚2, density 𝜌 =  800 𝑘𝑔/𝑚3, yield stress 0.25 K𝑁/m𝑚2 and the Poisson’s 

ratio 𝜇 =  0.3. The tubular parts are modeled by one-dimensional frame element with six 

degrees of freedom at each of its two nodes and designed according to the LRFD AISC [33] 

provision.  
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Table 1: The structural properties of sample systems 

Frame type Property Value (unit) 

Double layer diamatic 

dome 

Radius of top circum sphere 50 (m) 

Radius of bottom circum sphere 48.5 (m) 

Sweep angle 40 

Frequency of top layer 16 

Number of sectors 6 

Double layer grid 

Length in x-direction 45 (m) 

Length in y-direction 45 (m) 

Depth of grid 1.5 (m) 

Frequency in x-direction 30 

Frequency in y-direction 30 

Double layer pyramid 

Length of each side of base 30 (m) 

Height of pyramid 20 (m) 

Distance between two layers 1.25 (m) 

Frequency in each side 20 

Number of sides of the base 6 
 

 
Figure 2. (a) General view of the double-layer diamatic dome for Case I; (b) general view of 

the double-layer grid for Case II; (c) general view of the 

In the last step, the designed section properties of tubular parts and geometric properties 

imported from SAP2000 is used to carry out the set of modal analyses in the open-source 

finite-element package Opensees. The analytical Opensees model, consists of nodes 

coordinate, material properties and section assignments. 



APPLICATION OF FINITE ELEMENT MODEL UPDATING FOR DAMAGE … 

 

285 

Opensees is used to perform an eigenvalue analysis and calculate the mode shapes of the 

intact and damaged space structure. Opensees software is linked to MATLAB to perform 

the wavelet analyses and the vertical displacement of mode shape is selected as the input 

data. The isosurface of first natural frequency for sample systems with equal elevation on 

(𝑥, 𝑦) plane are illustrated in Fig. 4. 

 

 
Figure 3. Isosurface of the first natural frequency for the intact model: (a) Case I; (b) Case II; (c) 

Case III 

 

The 2D-CWT analysis with Mexican hat mother wavelet is applied to the isosurface 

generated by the fundamental mode shape. The isosurface is treated as 2D spatially 

distributed signals in the form of a matrix, corresponding to the vertical displacement of the 

joints along the x- and y-directions, respectively (table 2). 
 

Table 2: Geometric properties of sample systems 

Case No. Matrix dimension Number of elements Number of joints 

I 2352*2352 9216 2352 

II 1861*1861 7200 1861 

III 2521*2521 10980 2521 
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Nine damage scenarios are selected to evaluate the applicability of introduced method. 

Both of tubular parts and ball joints are vulnerable and could be suffered damage in a space 

structure. Here, damage is considered as a reduction of stiffness, which is incorporated into 

the equations by a reduction in the Young’s modulus of damaged element. Damage can be 

simulated in the ball joint by a reduction in the stiffness of all its connected tubular parts. 

The reduction stiffness in damaged elements for all scenarios is expressed in the last column 

in Table 3. 

 
Table 3: Damage scenarios of sample systems 

Scenario No. Case 
Damaged 

elements 

Damaged 

Joints 

Coordinate on isosurface Damage 

(%) x y 

1 I 6391 - 52 17 50 

2 I - 1282 36 24 70 

3 I - 
503 108 40 80 

1669 18 48 60 

4 II - 728 73 22 85 

5 II 1121 - 28 31 90 

6 II 
1133  28 67 65 

1536  70 16 80 

7 III - 578 82 33 90 

8 III - 954 37 34 80 

9 III 

10597  

58 97 

100 

10599  90 

10637  80 

 

The introduced scenarios are selected intently to investigate four main goals. Sensitivity 

of the proposed method to slight damage, the ability to detect damage in joints and tubular 

parts, multiple structural damage localization and quantification and the ability of fast 

damage detection for all types of space frames. 

Damage index 𝐷(𝑥,𝑦) from Eq. 19 is applied to minimize these effects. According to the 

denoised data modified in step 4, the final results for introduced scenarios are illustrated in 

Fig. 5.  
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Figure 5. Damage index for the first mode shape of: (a) Scenario 1; (b) Scenario 2; (a) Scenario 

3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6; (g) Scenario 7; (h) Scenario 8; (i) Scenario 9 
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Fig. 5 show the smoothed surface generated based on the positional damage index 

𝐷(𝑥,𝑦). The results show that, index D is a good indicator for damage detection. As the 

results, the noisy pattern of modified data or intensity of index D is variable and ascends 

according to the severity of damage imposed on the structure. 

To investigating the applicability of the proposed approach on structural damage 

quantification, the coordinates of damages defined in the previous steps and the modal 

parameters (frequencies and mode shapes) of intact and damaged structure are applied as the 

input to the CSS algorithm. The number of modes used should be selected intently to 

maintain proper balance between the robustness of the algorithm, and the effort put into 

providing the data. While using more data helps the algorithm to converge to the right state 

of damage in a larger portion of runs, it generally needs considerably more effort. Here, first 

seven natural frequencies are considered for the assessment of damages in all Examples. The 

number of CPs increases the search strength of the algorithm as well as the computational 

cost and vice versa a small number causes a quick convergence without performing a 

complete search. A population of 20 CPs is used for single damage cases, and 25 CPs is 

used for the multiple damage cases. A maximum number of iterations of 150 are used as the 

termination criterion in all the examples. 

Double layer diamatic dome is considered as the first numerical example. Natural 

frequencies for seven mode shapes of intact and damaged structures are presented in Table 3. 

 
Table 4: Natural frequencies of the intact and damaged structures (Double layer diamatic dome-

Case I) 

Frequency number Intact structure 
Scenario No. 

1 2 3 

1 43.340 43.336 43.281 43.238 

2 43.342 43.341 43.308 43.253 

3 45.235 45.235 45.184 45.149 

4 59.556 59.550 59.497 59.479 

5 59.559 59.557 59.538 59.511 

6 63.103 63.101 62.985 62.892 

7 63.110 63.110 63.106 63.060 

 

According to the damage coordinates, resulted from 2D-CWT analysis, 21, 21 and 40 

elements is selected in scenario 1, 2 and 3, respectively to perform FEMU analysis and 

defining the amount of damage on elements. Variation of the objective function with the no. 

of iteration is shown in Fig. 6. 

In the second case, Double layer grid is considered. Frequencies of the first seven mode 

shapes of intact and damaged structure is presented in table 5 according to the damage 

scenarios 4, 5 and 6.  
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Figure 6. Variation of normalized objective function with no. of iteration for scenarios of case I 

 
Table 2: Natural frequencies of the intact and damaged structures (Double layer grid -Case II) 

Frequency number Intact structure 
Scenario No. 

1 2 3 

1 23.141 23.126 23.098 23.136 

2 33.148 33.092 33.097 33.129 

3 33.148 33.148 33.148 33.148 

4 43.077 42.994 43.056 43.048 

5 75.465 75.425 75.413 75.460 

6 77.575 77.283 77.508 77.521 

7 78.650 78.305 78.550 78.510 

 

Fig. 7 shows the normalized objective function with iteration for 20, 18 and 39 selected 

elements in the damaged locations of scenarios 4, 5 and 6 respectively.  

 

 
Figure 4. Variation of normalized objective function with no. of iteration for scenarios of case II 
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The convergence history of 24, 23 and 20 elements in the damaged locations for 

scenarios 7, 8 and 9 are plotted in Fig.8, respectively. 

 
Table 3: Natural frequencies of the intact and damaged structures (Double layer pyramid - Case III) 

Frequency number Intact structure 
Scenario No. 

1 2 3 

1 58.928 58.853 58.844 58.907 

2 58.928 58.918 58.922 58.928 

3 66.444 66.360 66.344 66.408 

4 66.445 66.406 66.397 66.445 

5 74.373 74.300 74.291 74.353 

6 84.616 84.549 84.597 84.614 

7 94.102 93.977 93.958 94.034 

 

 
Figure 5. Variation of normalized objective function with no. of iteration for scenarios of case III 

 

According to the results of FEMU, error from the exact damage for each element in the 

damaged region defined by 2D-CWT is illustrated in Fig. 9 for scenario 1. It is worth to 

remind here that the more distant from zero these plots are, the worse the performance of a 

given algorithm is. 

 

 
Figure 6. Errors from the exact damage of elements in scenario 1 
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The mean error from exact damage for all damage scenarios are plotted in Fig. 10. 

 

 
Figure 7. The mean error from exact damage for all damage scenarios 

 

The results reveal that the applied optimization algorithm and proposed FEMU method is 

completely capable of multiple damage localization in different types of space structures. 

 

 

4. CONCLUSIONS 
 

The main objective of this heuristic study is to evaluate the performance of an evolutionary 

strategy in the finite element model updating approaches for damage assessment in space 

structures. Based on the continuous wavelet transform, the location of damaged joints or 

tubular parts are defined according to mode shapes of damaged and intact structure to 

increase the calculation costs of damage assessment. The finite element model updating 

method has been implemented as an inverse optimization problem by applying the charged 

system search algorithm to assess the severity of damage in each element sited in the 

damage region. 

Nine different numerical examples on three different shape of space structure were 

studied in order to show the advantages of proposed method. Referring to the results of these 

examples, the usefulness, Simplicity and flexibility of the proposed method in defining the 

amount of elements damage is demonstrated. 

The numerical results demonstrate that the combination of the 2D-CWT algorithm 

together with finite element model updating concepts can provide an efficient tool for 

properly identifying the multiple damages in all types of space structures without any 

limitation on size and shape of structure. 
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