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ABSTRACT 
 

In this paper the performance of four well-known metaheuristics consisting of Artificial Bee 

Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and 

Teaching Learning Based Optimization (TLBO) are investigated on optimal domain 

decomposition for parallel computing. A clique graph is used for transforming the 

connectivity of a finite element model (FEM) into that of the corresponding graph, and k-

median approach is employed. The performance of these methods is investigated through 

four FE models with different topology and number of meshes. A comparison of the 

numerical results using different algorithms indicates, in most cases the BBO is capable of 

performing better or identical using less time with equal computational effort. 
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1. INTRODUCTION 
 

Parallel processing was proposed to perform computational tasks in shorter time. In this 

mode of operating, a process is split into parts and each of which are executed by different 

processors simultaneously. In engineering, sometimes heavy computational works are 

required to solve the problems, where this approach is necessary to reduce the computing 

time. Finite element analysis as an important case for the time consuming problems can be 

performed through this approach. In this, given a number of available processors q, the finite 

meshes of the main model are decomposed into q subdomains and each subdomain is 
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analyzed by one processor. This means, all formulation of the equations, assembling and 

solution of the system of equations for each one of q subdomains are carried out in parallel. 

The total time required for this mode is slightly more than that of the longest subtask, hence 

an optimum decomposition that yields equal execution times is desired. Finding this 

optimum decomposition is the main objective of this paper. 

In mathematics the pointed problem belongs to a family of problems in graph theory, 

called ‘finding medians of a graph’ which is an NP-hard problem [1]. The exact solution of 

this problem, itself is highly time consuming, hence the approximate methods are suggested. 

Researchers have developed various methods to deal with domain decomposition especially 

for FEM [2-11]. A simple and powerful approach to tackle them is k-median method which 

can be simplified as follows. A graph is associated with the considered finite element. Then, 

the optimal medians of the graph are selected through the sum of the distances of nodes to 

optimum medians. Metaheuristics are suitable tools to solve this problem approximately. 

Recently a significant number of metaheuristics are proposed and applied to different 

engineering problem [12-15] .Of these, most well known Genetic algorithm [16,17], 

bionomic [18, 19] , ant colony [20] and colliding bodies optimization [21] are developed in 

order to obtain solutions for k-median problem. 

In this paper, four well-known algorithms; Artificial Bee Colony (ABC) [22], 

Biogeographic Based Optimization (BBO) [23], Harmony Search (HS) [13] and Teaching 

Learning Based Optimization (TLBO) [24] are implemented for optimal domain 

decomposition of finite element meshes. Since most of the referred papers used random 

initialization, authors also studied the effects of a special initialization technique so called k-

means++ [25]. The developed programs are applied to four benchmark problems with 

different numbers of subdomains. The efficiency of the algorithms is compared in terms of 

statistical results, convergence rate and consumed running times. 

The rest of this paper is organized as follows. The domain decomposition using k-median 

methodology and utilized initialization methods are comprehensively outlined in section 2. 

In Section 3 the reviews of different algorithms are provided. The experiment results are 

presented in section 4, and finally the conclusions are derived in section 5. 

 

 

2. DOMAIN DECOMPOSITION USING K-MEDIAN METHODOLOGY  
 

2.1 Preliminaries from graph theory 

A simple graph G is defined as a set 𝑁(𝐺) of nodes and a set 𝐸(𝐺) of edges together with a 

relation of incidence which associate two distinct nodes with each edge. Some of distinct 

nodes of graph are adjacent i.e. they are connected together with an edge. The edge is also 

called incident with both of its nodes. A simple graph with 9 nodes and 10 edges are drawn 

in Fig. 1(a). Graphs have several types, in overall the paper, the simple type is considered. A 

subgraph 𝐺𝑖 of a graph is a graph for which 𝑁(𝐺𝑖) ⊆ 𝑁(𝐺) , 𝐸(𝐺𝑖) ⊆ 𝐸(𝐺) and each edge 

of 𝐸(G𝑖) has the same ends as in G. A path is a finite sequence of nodes and edges 

like {𝑛0, 𝑒1,  𝑛1, … , 𝑒𝑝,  𝑛𝑝}, where the nodes (𝑛𝑖−1, 𝑛𝑖) are the ends of the edge (𝑒𝑖), while 

neither edges nor nodes are repeated. Cycle is a closed path with the last node and the first 

node being the same. A subgraph which has no cycle is known as a tree. A spanning tree of 
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a graph is a tree containing all the nodes of the graph. The distance between two nodes is the 

number of edges in the shortest path between these nodes. Shortest route tree (SRT) rooted 

from the node n is a spanning tree of connected graph G, such that the path from the root n 

to any other node u of the SRT is the shortest path from 𝑛 to 𝑢 in G. The schematic of a 

sample graph and its SRT rooted from node ‘1’ is illustrated in Fig. 1(b). A clique graph has 

the same nodes as those of the corresponding finite element model, and the nodes of each 

element are cliqued, avoiding the multiple edges for the entire graph [26, 27]. 

 

 
Figure 1. Examples form basic concepts from graph theory: (a) A simple graph. (b) An SRT 

rooted from node ‘1’ 

 

2.2 Domain decomposition method for finite element analysis 

As mention in section 2.1, all the FE analysis steps must be performed for each subdomain 

i.e. each of them can be considered as a super element. A finite element equation system can 

be assembled for each subdomain as Eq. (1): 

 

[𝑘]{𝑢}  =  {𝑓}  (1) 

 

where [k] is a subdomain stiffness matrix, {𝑢} is a subdomain displacement vector, and {𝑓} is 

a subdomain load vector. As illustrated in Fig. 2, the subdomain nodes are grouped into 

interior nodes and interface boundary nodes designated by the subscripts 𝑖 and 𝑏, respectively. 

If the interior nodes are numbered first and the interface boundary nodes are numbered last, 

then the subdomain equation system can be written in the following matrix form: 

 

[
𝑘𝑖𝑖 𝑘𝑖𝑏

𝑘𝑏𝑖 𝑘𝑏𝑏
] {

𝑢𝑖

𝑢𝑏
} = {

𝑓𝑖

𝑓𝑏
} (2) 

 

where matrices [𝑘𝑖𝑖] and [𝑘𝑏𝑏] correspond to interior and interface boundary nodes, 

respectively, and matrix [𝑘𝑖𝑏] reflects the interaction between the interior and boundary 

nodes. By disassembling the matrix, Eqs. (3 and4) are obtained as: 

 

[𝑘𝑖𝑖]. {𝑢𝑖} + [𝑘𝑖𝑏]. {𝑢𝑏} = {𝑓𝑖} (3) 
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[𝑘𝑏𝑖]. {𝑢𝑖} + [𝑘𝑏𝑏]. {𝑢𝑏} = {𝑓𝑏} (4) 

 

The determination of the displacements for interior subdomain is: 

{𝑢𝑖} = [𝑘𝑖𝑖]
−1{{𝑓𝑖} − [𝑘𝑖𝑏]. {𝑢𝑏}} (5) 

 

By substituting Eq. (5) in Eq. (4), the following equation can be obtained: 

 

[𝑘𝑏𝑖]. [𝑘𝑖𝑖]
−1{{𝑓𝑖} − [𝑘𝑖𝑏]. {𝑢𝑏}} + [𝑘𝑏𝑏]. {𝑢𝑏} = {𝑓𝑏} (6) 

 

Denoting super-element stiffness matrix and corresponding modified load vector by 

[𝑘∗] and {𝑓∗} leads to: 

 

[𝑘∗] = [[𝑘𝑏𝑏] − [𝑘𝑏𝑖]. [𝑘𝑖𝑖]
−1. [𝑘𝑖𝑏]] (7) 

{𝑓∗} = {{𝑓𝑏} − [𝑘𝑏𝑖]. [𝑘𝑖𝑖]
−1. {𝑓𝑖}} (8) 

 

According to these definitions, Eq. (6) can be rearranged as: 

 

[𝑘∗]{𝑢𝑏} = {𝑓∗} (9) 

 

Thus, structural stiffness matrix and nodal load vector for boundary nodes are assembled 

using Eq. (7) and Eq. (8), then the displacements of the nodes are evaluated by Eq. (9).  

For an instance finite element meshes illustrated in Fig. 2 can be performed by the 

following steps: first the finite meshes must be partitioned into several submeshes 

corresponding to the number of available processors. In this example, four processors are 

considered. The condensed stiffness matrix and modified load vector for each part is 

calculated by Eq. (7) and Eq. (8), respectively. Then processors are involved by solving Eq. 

(9) including approximately 1/4 of equations of the global matrix, so the internal nodal 

displacements are obtained. This is followed by the solution of the equations corresponding 

to interface nodes followed by the superposition of calculated displacements. 

As it be seen the steps are clear, except the first step that points to domain decomposition. 

An automatic finite element domain decomposer should meet the following requirements [11]: 

a. It should be able to handle irregular geometry. 

b. It should equally distribute the computational burden among processors. 

c. It should yield to minimum interface nodes to reduce the cost of synchronization 

between the processors. 

d. It should be fast and result in a good convergence rate of domain decomposition upon 

iterative method. 
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Figure 2. Partitioned finite element meshes 

 

2.3 The k-median of a graph 

In the aforementioned problem k is the number of node subsets 𝑁𝑘 ∈ 𝑁, and there is a 

median node 𝑚𝑘 for each subset. Usually different solutions can be suggested for the same 

graph, hence, the solution is desired whose subsets have minimum total distances from 

medians. According to the presented definition, the cost function of this optimization 

problem can be expressed by a double summation as follows: 

 

𝑍 = ∑ ∑ 𝐷(𝑚𝑘 , 𝑛𝑗)

𝑛𝑗∈𝑁𝑘

𝑘

𝑖=1

 (10) 

 

where 𝐷(𝑚𝑘 , 𝑛𝑗) is the shortest distances between 𝑘th median (𝑚𝑘) and a node (𝑛𝑗) of 𝑘th 

domain as defined in section 2.1. As suggested in [11], the clique graph should be plotted in 

Cartesian coordinate system. If the found components for median are not the same as the 

plotted nodes, the nearest node is substituted. The medians are evaluated by calculating the 

graph theoretical distance from all nodes. Nodes with the least distance from a particular 

median form the domain of that median. 

 

2.4 k-means++ 

k-means method is a widely used clustering technique that seeks to minimize the average 

squared distance between points in the same cluster [28] . The basic k-means method starts 

from random initialization. Arthur and Vassilvitskii [25] proposed a probabilistic approach 

for initialization, so called k-means++. The initialization steps of this approach is presented 

in following: 

a. Take one median 𝑚 , chosen uniformly at random from N. 

b. Take a new median 𝑚𝑛𝑒𝑤, choosing 𝑛 ∈ 𝑁 with probability 
𝐷(𝑚,𝑛)2

∑ 𝐷(𝑚,𝑛)2
𝑛∈𝑁

. 

c. Repeat step b. until we have taken k medians altogether. 

In this paper, the k-means++ is used as well as random initialization in order to guide 
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metaheuristics. The effects of these approaches are also investigated in the results of 

experiments.  
 

 

3. METAHEURISTICS 
 

Metaheuristics are non-deterministic optimization approaches, which do not guarantee that 

globally optimal solution can be found. However, they find feasible solutions for 

optimization problems in vicinity of the computation limits [29, 30]. Here, utilized 

algorithms consisting of the Artificial Bee Colony (ABC), Biogeographic Based 

Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization 

(TLBO) are considered and their pseudo codes are provided. In all cases the number of 

search agents (population) and number of iterations are limited to 20 and 100, respectively. 

 

3.1 Artificial bee colony algorithm 

ABC as a swarm intelligence algorithm imitates the foraging behavior of the honey bees 

[31]. This optimization technique has been successfully applied to various practical 

problems [32]. In this algorithm there are three types of bees: employed bees, onlooker bees, 

and scout bees. The bee’s aim is to discover the places of food sources with high nectar 

amount. In which, the employed bees search food around the food source and share the 

information of these food sources to the onlooker bees. The onlooker bees tend to select 

good food sources from those found by the employed bees. The selection probability of each 

source by onlookers is calculated by the following equation: 

 

𝑝𝑠 =
𝑓𝑠

∑ 𝑓𝑗
𝑁𝑠
𝑗

 (11) 

 

where 𝑓𝑠 is the fitness of the sth source and Ns is the number of all candidate sources. The 

scout bees search new food sources and replace with abandoned sources. The steps of this 

algorithm are represented in the following pseudo code. 

 

Initial food sources are produced for all employed bees 

while terminating conditions are not met do 

 Employed bees: 

 for i =1 to number of employed bees do 

ith employed bee goes to a food source in her memory and determines a 

neighbor source evaluates its nectar amount (fitness) 

if nectar amount of neighbor is more than the previous food source then 

 Replace the new neighbor with the previous source  

else 

 Mark it as a candidate to be abandoned 

end if 

 end for 

 Onlooker bees: 
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for j =1 to number of onlooker bees do 

jth onlooker chooses one of sources and chooses a neighbor around that with 

Eq. (11) 

and evaluates its nectar amount. 

if nectar amount of neighbor is more than the previous food source then 

 Replace the new neighbor with the previous source  

else 

 Mark it as a candidate to be abandoned 

end if 

 end for 

 Scout bees: 

 if the number of marks are more than a specified limit then 

Abandoned food sources are determined and are replaced with the new food 

    sources  

 end if 

The best food source found so far is registered.  

end while 

 

3.2 Biogeographic Based Optimization algorithm 

Simons proposed a new population based algorithm so called biogeography based 

optimization (BBO) algorithm [23]. In biogeography, the suitability of a habitat to live is 

called ‘habitat suitability index’ (HSI), according to this definition the amiable places have 

high HIS and the habitats unfriendly to live have a low HIS. This index pursues some 

features, which are called ‘suitability index variables’ (SIVs). Examples of this index are 

weather conditions, access to food, diversity, safety and so on. Habitats with low HSI have 

both a high emigration rate (μ) and a low immigration rate (λ); in contrary, habitats with 

high HSI have a high λ and a low μ (Eqs. (12 and 13)).  

 

𝜆𝑘 = (1 − 𝑟𝑘) (12) 

𝜇𝑆 = 𝑟𝑘 (13) 

 

where 𝑟𝑘 is the rank of the kth habitat. Suppose a problem is presented with some 

candidate solutions. A good solution is analogous to a habitat with a high HSI, and a 

poor solution represents a habitat with a low HSI. High HSI solutions resist the change 

more than low HSI solutions and tend to share their features with low HSI solutions, 

while poor solutions accept many new features from the good solutions. The pseudo 

code of the BBO is presented in following. 

 

Initialize habitats 

while terminating conditions are not met do 

 Apply migration 

 for 𝑗=1 to number of habitats do 

  Select habitat 𝐻𝑗 according to 𝜆𝑗 

  if rand(0,1) < 𝜆𝑗 then 
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   for e=1 to 𝐻 do 

    Select habitat 𝐻𝑒 according to 𝜇𝑒 

    Replace the selected SIV of 𝐻𝑗 by selected SIV of 𝐻𝑒 

  end for 

  end if  

 end for 

 

 Apply mutation 

 

 for 𝑗 = 1 to number of habitats do 

  if rand(0,1) < mutation probability then 

   Replace 𝐻𝑗(SIV) with randomly generated SIV 

  end if 

 end for 

 Sort the population according to the increasing order of fitness 

Keep the elite solution 

Stop, if termination criterion satisfied 

end while 

 

3.3 Harmony search algorithm 

Harmony Search (HS) algorithm simulates finding best harmony by musicians [13]. This 

algorithm is widely utilized in engineering problems [33]. In which, the candidate solutions 

are considered as harmonies and the best harmony is arranged by utilizing some mechanisms 

upon several parameters. These parameters are defined as follows: 

hms : the size of the harmony memory.  

hmcr : the rate of choosing a value from the harmony memory.  

par : the rate of choosing a neighboring value.  

fw (fret width): the amount of maximum change in pitch adjustment. The new harmony is 

calculated by the following equation: 

 

𝑥𝑛 = 𝑥𝑝 + 𝑓𝑤 × 𝑟 (14) 

 

where 𝑥𝑛, 𝑥𝑝, 𝑓𝑤 and 𝑟 are harmony new position, harmony previous position, fret width 

and random number within (-1,1), respectively. 

 

Initialize harmony memories as many as hms 

Evaluate all memorized harmonies 

while terminating conditions are not met do 

 Initialize new harmonies as many as candidate solutions (nNew) 

 for i=1: nNew do 

  for 𝑗=1 to number of variables do 

   if 𝑟𝑎𝑛𝑑(0,1)  ≤ ℎ𝑚𝑐𝑟 then 

    Choose the jth variable from a randomly selected vector of harmony memory 

    Replace the chosen variable with the jth variable of the ith new harmony  
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   end if 

   if 𝑟𝑎𝑛𝑑(0,1)  ≤  𝑝𝑎𝑟 then 

    Change the jth variable of the ith new harmony by Eq. (14)  

   end if 

  end for 

  Evaluate the ith harmony 

 end for 

 Consider all harmonies containing new created harmonies and harmony memories and 

save hms best harmonies  

end while 

 

3.4 Teaching learning based optimization algorithm 

This population-based method is motivated by the influence of a teacher on learners. The 

population is considered as a group of learners and the process of TLBO is divided into two 

parts: the first part consists of the ‘Teacher Phase’ and the second part consists of the 

‘Learner Phase’. In ‘Teacher Phase’ teacher learns and in ‘Learner Phase’ learning is 

performed by the interaction between learners. In the first phase, the position of learners are 

updated by Eq. (15): 

 

𝐿𝑛𝑒𝑤
𝑖 = 𝐿𝑜𝑙𝑑

𝑖 + 𝑅𝑎𝑛𝑑𝑜𝑚 × (𝑇 − 𝑇𝐹 × 𝑀) (15) 

 

where 𝐿𝑛𝑒𝑤
𝑖 , 𝐿𝑜𝑙𝑑

𝑖 , 𝑅𝑎𝑛𝑑𝑜𝑚, 𝑇, 𝑇𝐹 𝑎𝑛𝑑 𝑀 are new position of the ith learner, old position of 

the ith learner, random number within (0,1), teacher’s position, teaching factor and mean 

position of class. 

In the learner phase, the position of learners are updated by Eqs. (16.a, 16.b): 

 

𝐿𝑛𝑒𝑤
𝑖 = {

𝐿𝑜𝑙𝑑
𝑖 + 𝑅𝑎𝑛𝑑𝑜𝑚 × (𝐿𝑜𝑙𝑑

𝑖 − 𝐿𝑟𝑎𝑛𝑑.)          𝑖𝑓  𝐶(𝐿𝑜𝑙𝑑
𝑖 ) < 𝐶(𝐿𝑟𝑎𝑛𝑑.)  

𝐿𝑜𝑙𝑑
𝑖 − 𝑅𝑎𝑛𝑑𝑜𝑚 × (𝐿𝑜𝑙𝑑

𝑖 − 𝐿𝑟𝑎𝑛𝑑.)          𝑖𝑓  𝐶(𝐿𝑜𝑙𝑑
𝑖 ) > 𝐶(𝐿𝑟𝑎𝑛𝑑.) 

 
(16a) 

(16b) 

 

where 𝐿𝑟𝑎𝑛𝑑 is a random learner who interacts with ith learner and C is the cost function.  

The pseudo code of TLBO is provided here: 

 

Initialize individuals randomly 

while terminating conditions are not met do 

 Evaluate all individuals and determine the teacher with the minimum cost and mean 

position of learners 

 Teacher Phase 

 for i=1: number of learners do 

  Update the position of learners by Eq. (15) 

  if 𝐶(𝐿𝑛𝑒𝑤
𝑖 ) < 𝐶(𝐿𝑜𝑙𝑑

𝑖 ) then 

   Replace 𝐿𝑛𝑒𝑤
𝑖  with 𝐿𝑜𝑙𝑑

𝑖  

  end if 

 end for 
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 Learner Phase 

 for j=1: number of learners do 

  Update the position of learners by Eqs. (16 a, 16 b) 

  if 𝐶(𝐿𝑛𝑒𝑤
𝑗

) < 𝐶(𝐿𝑜𝑙𝑑
𝑗

) then 

   Replace 𝐿𝑛𝑒𝑤
𝑗

 with 𝐿𝑜𝑙𝑑
𝑗

 

  end if 

 end for 

end while 

 

 

4. NUMERICAL RESULTS 
 

In this section, four well-known algorithms described in section 3 with random initialization 

and k-means++ initialization approaches, are examined by four FE models. The algorithms 

are ran 30 times and the statistical results and convergence histories are obtained. These 

results are obtained by Core ™ i7-5500U CPU @ 2.4 GHz and the clock time of 

computations are calculated. Additional information about the models and results are 

presented in the following subsections. 

 

4.1 Square plate 

The first example is a rectangular plate with 2601(51×51) meshes plotted in Fig. 3. This 

model with 3,4,5 and 6 medians was studied by Kaveh and Mahdavi [11] to decompose 

optimal domains using Colliding Bodies Optimization (CBO) algorithm [34]. The number of 

medians are set according to the referred article and the statistical results are presented in 

Table 1. Convergence histories are depicted for mean of 30 independent trial in Fig. 4. 

 

  
a b 

Figure 3. FE models of Example 1. (a) FE meshes. (b) The corresponding clique graph 
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Table 1: Comparison of the statistical results for Example 1 

 ABC  BBO  HS  TLBO  

 Random k-means++ Random k-means++ Random k-means++ Random k-means++ 

A
v

er
ag

e 

k=6 19958.8 20045.8 18936.6 18935.8 19520.7 19472.9 19031.9 19026.6 

k=5 21272.7 21220.6 20509.7 20509.6 20814.4 20761.2 20537 20553.7 

k=4 22681.5 22878.2 22113 22113 22148.1 22131.8 22153.5 22158.9 

k=3 28160.7 28151.7 28097.2 28098.3 28099.2 28102.7 28097.9 28100 

B
es

t 

k=6 19607 19696 18921 18921 19270 19180 18944 18941 

k=5 20903 20750 20505 20505 20619 20600 20505 20505 

k=4 22259 22405 22113 22113 22113 22113 22113 22113 

k=3 28100 28107 28097 28097 28097 28097 28097 28097 

S
ta

n
d

ar
d

 

d
ev

ia
ti

o
n
 

k=6 238.1 193.1 25.6 24.7 131.2 143.4 67.6 58.9 

k=5 264.7 282.4 3.9 4.6 131.4 115.7 34.9 48.3 

k=4 240.2 300.9 0 0 54.3 35.4 2.4 61.9 

k=3 35.6 26.3 0.6 4.9 5.1 11.1 18944 7.2 

C
P

U
 t

im
e 

(s
ec

) 

k=6 54.9 51.9 27.1 25 26 28 50 52.3 

k=5 52.2 51.3 26 24.7 27.3 26.7 50.2 49.5 

k=4 51.6 51 25.4 24.4 27.7 27.7 50.8 49 

k=3 53.2 51.2 26.2 24.2 26.1 27.5 48.6 48.8 

 

 

  
a b 



A. Kaveh and A. Dadras 

 

238 

  

c d 

Figure 4. The average convergence curves obtained in 2601 meshes FE model: (a) k=3. (b) 

k=4. (c) k=5. (d) k=6 

 

As presented in Table 1, the BBO outperformed other considered algorithms. The BBO 

outperformed CBO for k=5 and 6 cases and obtained the same results for k=3 and 4 

presented in [13]. As written in bold font, in some cases using k-means++ improved the 

results of BBO, while this statement is not true about all cases. Fig. 4 shows higher 

convergence rate of the BBO and TLBO. Fig. 5 illustrates the optimal domains with distinct 

colors and medians positions with black filled circles. 

 

4.2 H-shaped finite element model 

This FEM is consider with 4949 meshes as illustrated in Fig. 6. The number of 5 and 10 

subdomains are considered and the statistical results are presented in Table 2. Average 

convergence histories are illustrated in Fig. 7. 

 

  
a b 
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c d 

Figure 5. A FEM decomposed into k subdomains using the BBO algorithm: (a) k=3. (b) k=4. (c) 

k=5. (d) k=6 

 

 
Figure 6. The FE model of Example 2 

 
Table 2: Comparison of the statistical results for Example 2 

 ABC BBO HS TLBO 

  Random 
k-

means++ 
Random 

k-

means++ 
Random k-means++ Random k-means++ 

Average 
k=5 60311.1 60030.4 55136.7 55008 56601.4 56637.7 55265 60311.1 

k=10 45326.2 44938.7 38198.6 37896.1 41934.4 42256.3 38760.7 45326.2 

Best 
k=5 57719 58308 55008 55008 55186 55347 55013 57719 

k=10 43699 41932 37717 37717 40869 41341 37900 43699 

Standard 

deviation 

k=5 1031.9 1168.3 704.9 0 1039.1 899 292.4 1031.9 

k=10 853.4 991.9 578.6 195.6 581.7 446.8 888.9 853.4 

CPU time 

(sec) 

k=5 96.6 93.3 50.3 47.7 51.1 50.7 107.3 96.6 

k=10 104.3 97.3 50.6 51.2 53.2 53 100.9 104.3 
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a b 

Figure 7. The average convergence curves obtained by different methods in Example 2: (a) k=5. 

(b) k=10 

 
According to Table 2, the BBO obtained the better optimum results, also, using k-

means++ improved the robustness of the method. As illustrated in Fig. 7, the BBO 

especially with k-means++ initialization reached the higher average convergence rate in both 

cases. Zero value for standard deviation of the BBO in the first case shows that has it led to 

55008 for the cost function in all 30 trial, which is the best so far reported result. The 

optimal solutions are displayed in Fig. 8. 

 

  
a b 

Figure 8. A FEM divided into k subdomains using the BBO algorithm: (a) k=3. (b) k=4. (c) k=5. 

(d) k=6 

 

4.3 Rectangular plate with four openings 

As shown in Fig. 9, this rectangular plate with 4 openings, has 760 meshes. The numbers 

of medians considered as k={5 and 10}.The results are presented in Table 3 and the average 

convergence histories are depicted in Fig. 10. 
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Figure 9. The FE meshes of example 3 

 

Table 3: Comparison of the statistical results for Example 3 

Algorithm Initialization Average Best 
Standard 

deviation 

CPU time 

(sec) 

  k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 

ABC 
Random 4812.5 3465.5 4670 3362 63.9 47.4 18.4 19.5 

k-means++ 4815.6 3475.6 4694 3372 67.6 48.2 17.8 18.9 

BBO 
Random 4488.2 2971.1 4467 2934 65.4 20.1 9.1 9.8 

k-means++ 4492.5 2962.9 4467 2934 50.2 31 9.1 9.8 

HS 
Random 4582.3 3304.6 4502 3215 45 33.3 8.9 9.5 

k-means++ 4582.5 3296.3 4482 3202 62.4 51.2 9 9.7 

TLBO 
Random 4507.9 3055.4 4467 2968 39.7 41.4 19.6 20.2 

k-means++ 4513.5 3064.9 4467 2959 36.5 61.3 19.1 19.5 

 

 

  
a b 

Figure 10. The average convergence histories of Example 3 obtained by different methods: (a) 

k=5. (b) k=10 
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As presented in Table 3, the BBO outperformed other methods in terms of average cost 

and best cost, while HS completed the optimization process in lower CPU time. According 

to Fig. 10 the convergence speed of the BBO is more than other compared methods. The 

optimal domains and medians of both cases are plotted in Fig. 11. 

 

  
a b 

Figure 11. A FEM divided into k subdomains using the BBO algorithm: (a) k=5. (b) k=10 

 

4.4 Perforated circular plate 

A circular plate is considered as shown in Fig. 12. This FEM contains 1152 meshes and the 

number of subdomains are set to k= {4 and 5}. The statistical results are provided in Table 4 

and convergence curves are plotted in Fig. 13. 

 

 

 
Figure 12. The FE meshes of a circular plate 
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Table 4: Comparison of the statistical results for example 4 

Algorithm Initialization Average Best Standard deviation CPU time (sec) 

  k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 

ABC 
Random 7562.6 5623.1 7283 5486 100.5 60.6 28.1 29.7 

k-means++ 7589.7 5651.5 7325 5549 98.3 54.2 29.1 31.1 

BBO 
Random 7271 5261.6 7230 5210 58.1 35.5 13.5 15.2 

k-means++ 7312.1 5257.3 7230 5188 107.7 36.5 13.4 15.2 

HS 
Random 7540.2 5605.6 7413 5419 71 55.1 13.2 14.8 

k-means++ 7521.6 5602.6 7296 5489 95.1 49.3 14.3 16.9 

TLBO 
Random 7257.6 5281.1 7230 5210 26.1 41 26.8 30.6 

k-means++ 7273 5292.2 7230 5207 35.2 50.7 27.4 30 

 

  

a b 

Figure 13. The average convergence histories of circular plate obtained by different methods: (a) 

k=5. (b) k=10 

 
In this case, the best results are obtained by BBO and TLBO, while consumed time by 

HS is slightly lower than the BBO. Convergence curves also show better convergence of the 

BBO and TLBO. The optimal solutions are illustrated in Fig. 14.  

 

  
a b 

Figure 14. A FEM divided into k subdomains using the BBO algorithm: (a) k=5. (b) k=10 
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5. CONCLUSION 
 

Four well-known metaheuristics are applied to optimal domain decomposition of FE models 

with different topology and number of meshes. According to results, BBO algorithm has 

generally performed better in most cases. According to Fig. 15(a) BBO algorithm has better 

performance, when is initialized by k-means++, except in standard deviation item. However 

by considering all algorithms, both initializations are almost equal and the only advantage of 

above initialization approach is lower required time to optimize, as depicted in Fig. 15(b). 

After BBO, the TLBO has obtained good convergence rate, average and minimum results, 

also, HS algorithm has consumed little time for completing the optimization procedure. 

Finally, this study suggests the implementation of BBO for the domain decomposition of 

finite elements due to the superiority of the results obtained by this method. 
 

  
a b 

Figure 15. Outperforming percent of different initialization approaches: (a) in BBO algorithm. 

(b) by considering all algorithm 
 

 

REFERENCES 
 

1. Michael R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of 

NP-Completeness, W.H. Freeman, ISBN 0-7167-1045-5, 1979. 

2. Farhat C, A simple and efficient automatic fem domain decomposer, Comput Struct 1988; 28: 

579-602. 

3. Farhat C, Lesoinne M. Automatic partitioning of unstructured meshes for the parallel solution 

of problems in computational mechanics, Int J Numer Meth Eng 1993; 36: 745-64. 

4. Khan A, Topping B. Subdomain generation for parallel finite element analysis, Comput Syst 

Eng 1993; 4: 473-88. 



OPTIMAL DOMAIN DECOMPOSITION VIA K-MEDIAN METHODOLOGY … 

 

245 

5. Khan A, Topping B. Parallel adaptive mesh generation, Comput Syst Eng 1991; 2: 75-101. 

6. Kaveh A, Roosta G. An algorithm for partitioning of finite element meshes, Adv Eng Softw 

1999; 30: 857-65. 

7. Kaveh A. Computational Structural Analysis and Finite Element Methods, Springer Science 

& Business Media, Switzerland, 2013. 

8. Kaveh A, Sharafi P. Ant colony optimization for finding medians of weighted graphs, Eng 

Comput 2008, 25: 102-20. 

9. Kaveh A, Shojaee S. Optimal domain decomposition via p-median methodology using ACO 

and hybrid ACGA, Finite Elem Anal Des 2008, 44: 505-12. 

10. Kaveh A, Mahdavi VR. Optimal domain decomposition using the global sensitivity analysis 

based metaheuristic algorithm, Scientia Iranica; Trans A, Civil Eng, 2017, Published Online. 

11. Kaveh A, Mahdavi VR. Optimal domain decomposition using colliding bodies optimization 

and k-median method, Finite Elem Anal Des 2015; 98: 41-9. 

12. Kaveh A, Dadras A. Structural damage identification using an enhanced thermal exchange 

optimization algorithm. Eng Optim 2017;  Published online. 

13. Geem ZW, Kim JH, Loganathan G. A new heuristic optimization algorithm: harmony search. 

Simul 2001; 76(2): 60-8. 

14. Kaveh A. Dadras A. A guided tabu search for profile optimization of finite element models. 

Int J Optim Civil Eng 2017; 7(4): 527-37. 

15. Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: Thermal exchange 

optimization. Adv Eng Softw 2017, Published online. 

16. Alp O, Erkut E, Drezner Z. An efficient genetic algorithm for the p-median problem, Annals 

Oper Res 2003; 122: 21-42. 

17. Estivill-Castro V, Torres-Velázquez R. Hybrid genetic algorithm for solving the p-median 

problem, Simul Evol Learn 1999; 18-25. 

18. McKendall AR, Shang J. Hybrid ant systems for the dynamic facility layout problem, 

Comput Operat Res 2006; 33: 790-803. 

19. Maniezzo V, Mingozzi A, Baldacci R. A bionomic approach to the capacitated p-median 

problem, J Heurist 1998; 4: 263-80. 

20. Levanova TyV, Loresh M. Algorithms of ant system and simulated annealing for the p-

median problem, Automat Remote Control 2004; 65: 431-8. 

21. Kaveh, A., Advances in Metaheuristic Algorithms for Optimal Design of Structures. 2nd 

edition, Springer, Switzerland, 2017 

22. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function 

optimization: artificial bee colony (ABC) algorithm, J Global Optim 2007; 39: 459-71. 

23. Simon D, Biogeography-based optimization, IEEE Trans Evol Comput 2008; 12: 702-13. 

24. Rao RV, Savsani VJ, Vakharia D. Teaching-learning-based optimization: a novel method for 

constrained mechanical design optimization problems, Comput-Aided Des 2011; 43: 303-15. 

25. Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding, in: Proceedings of 

the Eighteenth Annual ACM-SIAM symposium on Discrete algorithms: Society for Industrial 

and Applied Mathematics 2007; pp. 1027-1035. 

26. Kaveh A, Roosta GR. Comparative study of finite element nodal ordering methods, Eng 

Struct 1998; 20(1-2): 86-96 

27. Kaveh A. Structural Mechanics: Graph and Matrix Methods, in: Research Studies Press Ltd, 

2004. 

28. Lloyd S. Least squares quantization in PCM, IEEE Trans Inform Theory 1982; 28: 129-37. 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=O0b2DJoAAAAJ&cstart=40&citation_for_view=O0b2DJoAAAAJ:roLk4NBRz8UC


A. Kaveh and A. Dadras 

 

246 

29. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering: 

Springer, Switzerland, 2017. 

30. Talbi EG. Metaheuristics: From Design to Implementation: John Wiley & Sons, Vol. 74, 

2009. 

31. Karaboga D. An idea based on honey bee swarm for numerical optimization, in: Technical 

report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 

2005. 

32. Sonmez M, Discrete optimum design of truss structures using artificial bee colony algorithm, 

Struct Multidiscip Optim 43 2011 85-97. 

33. Saka MP, Aydogdu I, Hasancebi O, Geem ZW, Harmony Search Algorithms in Structural 

Engineering, in: Yang XS, Koziel S (Eds.) Comput Optim Appl Eng Indust 2011; pp. 145-

182, Berlin, Heidelberg: Springer Berlin Heidelberg. 

34. Kaveh A, Mahdavi V. Colliding bodies optimization: A novel meta-heuristic method, 

Comput Struct 2014; 139: 18-27. 


