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ABSTRACT 
 

For any agency dealing with the design of the water distribution network, an economic 

design will be an objective. In this research, Central Force Optimization (CFO) and 

Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution 

network. Optimization of the network has been evaluated by developing an optimization 

model based on CFO and DE algorithm in MATLAB and the dynamic connection with 

EPANET software for network hydraulic calculation. Conclusions show CFO runtime is 

less than DE. While optimization of CFO (737,924 $) and DE (737,920 $) are %1.61 and 

%1.57 more than the absolute optimum that determined by the MILP method (726,463 $), 

respectively. 
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1. INTRODUCTION 
 

A significant portion of the water supply system cost is relevant to the water distribution 

network [1]. Thus, finding the optimal cost for implementation of these networks is 

economically helpful in the water supply systems design. Schaake and Lai for the first time 

presented a linear programming solution to optimize pipe diameters of the water distribution 

network (WDN) of New York City [2]. 
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In the past few decades, many researchers focused on finding the optimal cost of pipe-

sizing of water distribution networks (WDNs) by utilizing the meta-heuristic optimization 

algorithms [3, 4]. They have shown that these methods were successful in solving a single 

objective WDN problem. But as mentioned in the previous researches, a WDN design with 

the least pipe-sizing cost could not have the sufficient surplus energy which is required to 

meet the future demands or to overcome the failure conditions during the operational period 

of WDN [5]. The researches relevant to this issue emphasized to consider the WDN 

problem as a multi-objective problem with minimizing the cost function and maximizing the 

benefit function of WDN. So far, various contractual indices have been defined for benefit 

function. 

In the past few decades, many researchers focused on finding the optimal cost of pipe-

sizing of water distribution networks (WDNs) by utilizing the meta-heuristic optimization 

algorithms. Application of the genetic algorithm [6, 7], colliding bodies optimization [8], 

the modified genetic algorithm [9], the tug of war Optimization [10], the simulated 

annealing algorithm [11], the shuffled leapfrog algorithm [12], ant colony optimization [13], 

charged system search algorithm [14], novel cellular automata [15], the particle swarm 

algorithm [16], and the differential evolution algorithm [17] for optimal design of water 

distribution systems are some of them. Also Sheikholeslami and Kaveh [18] studied on 

vulnerability assessment of water distribution networks by using graph theory method. 

These researches showed that these algorithms were successful in finding the most 

economic cost of water networks. But, due to their stochastic nature there was no guarantee 

that the global optimum was found. Also, since they are stochastic optimization techniques, 

the solution found in each run was not always the same and therefore, several runs were 

necessary to ensure that the solutions identified as good quality. 

The present paper is focused on implementation of the DE algorithm and Central Force 

Optimization (CFO) for optimal design and rehabilitation of water distribution networks. 

Use of addition, subtraction and component swapping are the distinguishing features of DE 

and CFO that successively update the population of solution vectors, until the population 

hopefully converges to an optimal solution.  

Recently a new approach to the optimization has been introduced, called central force 

optimization. Central Force Optimization (CFO) is a new nature-inspired, gradient-like 

meta-heuristic for multidimensional search and optimization [19]. Since this physical law in 

which masses move towards the gravitational field is deterministic, CFO’s equations are 

inherently deterministic. Therefore, in CFO, multiple runs for the sake of finding its 

performance are not required and every CFO run with the same setup will result the same 

[20]. This algorithm has been successfully applied to a variety of problems, among them: 

antenna optimization [21]; drinking water distribution networks [3] and improve the global 

search ability of Standard CFO [22]. These researches have shown high efficiency of this 

optimization method and also in some of them, the researchers have enhanced CFO 

performance through creating some modifications in the method. 

In the recent past, DE algorithm was used to optimize the water pumping system [23], 

multi-objective reservoir system operation [24] and irrigation system planning [25]. 

In this paper, CFO and DE algorithm is developed to obtain the optimum pipe size and 

inlet pressure head that produce the least cost design of networks by [26]. The hydraulic 

analysis of the network is based on continuity at nodes and Hazen-Williams formula for 
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head loss calculations by using link between EPANET and MATLAB Software [27]. The 

results of this investigation compared with absolute optimization is obtained by mixed 

integer linear programming (MILP) model that is presented by Shahinezhad [26]. 

 

 

2. MATERIAL AND METHODS 
 

2.1 EPANET model 

EPANET developed by the U.S. Environmental Protection Agency’s Water Supply and 

Water Resources Division and can perform hydraulic analysis of unlimited network size and 

complexity (looped systems, etc.). They also provide EPANET Programmer’s Toolkit that 

is a dynamic link library (DLL) of functions which allows developers to customize 

EPANET’s computational engine for the user’s specific needs. This model computes 

hydraulic performance (pressure in the nodes, flow and head-loss in the pipe) for a given 

layout and nodal demands. It can analyze the performance of the system and can be used to 

design system components to meet distribution requirements.  

The basic hydraulic equations involved in EPANET are the mass and energy 

conservation [36]. The law of mass conservation states that the rate of storage in a system is 

equal to the difference between the inflow and outflow to the system. For each junction, the 

conservation of mass can be expressed as:  

 

in out extQ Q Q    (1) 

 

where Qin and Qout are the inflows and outflows of the node; and Qext is the external demand. 

Conservation of energy states that the total head loss within a loop must be equal to zero. 

For each closed loop, the conservation of energy can be expressed as: 

 

i L

i loop l

H 0          l  N


     (2) 

 

where Hi is head loss in the pipe i and NL is total number of loops in the system.  

The head loss in the pipe ith which is located between junction jth and kth is equal the 

difference between nodal head at both ends: 

 

i j k  H  H H    (3) 

 

EPANET computes friction head loss using the Hazen-Williams, Darcy-Weisbach, or 

Chezy-Manning formulas. 

Herein, the Hazen-Williams (HW) equation is used to approximate the head loss and can 

be described as: 
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αi
f iα β

i i

L
 h ω Q

C D
  (4) 

 

Here α = 1.85, β = 4.87, Qi is the pipe flow (m3/s), Ci is the is the Hazen- Williams 

roughness coefficient which ranges from 150 for smooth-walled pipes to as low as 80 for 

old, corroded cast iron pipes, Di is pipe diameter (m), and Li is pipe length (m). 

 is a dimensionless conversion factor whose numerical value depends on the units used 

which in this research the Hazen-Williams formula in EPANET has an ω value of 10.5879; 

therefore 10.5879 as well as 10.5088 were chosen as the ω values here. Also all the 

researches in the literature that used in this study to compare the results have the same ω 

value. Higher ω values require larger diameters to deliver the same amount of water, 

because these can violate the minimum pressure requirements, while the lower ω values 

may just meet the constraint. Thus, higher ω values eventually require more expensive water 

network designs.  

 

2.2 Objective function and constraints 

On the other hand, two parameters are crucial in any optimization problem, 1- objective 

function and 2- constraints; these parameters need to be specified. 

The purpose of this research is also to minimize the economic costs of Ismail Abad water 

Distribution network, while all administrative and technical constraints are considered. The 

total annual cost of a pressurized branched network system can be introduced as: 

 

     
NP NPU

i i i I en PI

i=1 I=1

f D = L .CP .CRF + CPU .CRF +C .H   (5) 

 

where, LN = length of pipe number N, N = subscript representing pipe number in the 

network, CPN = unit length cost of pipe N, which is a function of pipe diameter, NP = 

Number of pipes, CPU I = cost of the Ith pump which is a function of the total power of the 

pump required, NPU= Number of pumps in the network system, Cen = annual energy cost 

per unit head, 

The annual energy cost per unit head of the pump can be expressed as: 

 

fu s t
en

e

C .Q .Q .EAE
C =

102η
 (6) 

 

In which, Cfu is the fuel cost ($/kWh); Ot is the number of annual system operating in 

hours; EAE is the equivalent annualized escalating energy cost factor; e is the overall 

pump efficiency in fraction. 

 

   

     

y y

y

1+e 1+r r
EAE=

1+e 1+r 1+r 1

 
 

   

 (7) 
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In which, e is the decimal equivalent annual rate of energy escalation; y is the life time of 

the design in years, and r is the decimal equivalent annual interest rate. HPI = total dynamic 

head of the Ith pump, CRF=capital return factor which is calculated as below: 

 

 

 

y

y

r 1+r
CRF=

1+r 1
 (8) 

I ICPU =P .K  (9) 

 

where, PI=total power of the Ith pump and K= pump station cost per unit total power 

($/KW). 

Multiplying the terms of the first summation of equation (1) by zero-unity variables such 

as XNJ, and adding for all commercially available pipes yields: 

 

     
NP ND NPU

i i i,j i,j I en PI

i=1 j=1 I=1

f D = L .CP .CRF.X + CPU .CRF +C .H   (10) 

 

ND = number of commercially available pipe Diameter, 

The objective function is to be minimized under the design and hydraulic constraints that 

should be respected by CFO algorithm for reaching optimum solution for design cost of 

network. The pipe diameter bounds as a design constraint and the velocity bounds in each 

pipe and the pressure bounds in each node of network are given respectively as: 

Pressure constraint 

Minimum Allowable pressure head required for each node is considered to be 50 m. 

Velocity constraint 

In order to prevent sediment deposition in low flow velocities and avoid water hammer at 

high velocities, minimum and maximum allowable flow velocities in pipes are considered to 

be 0.7 m/s and 2m/s, respectively. 

 

2.3 Central force optimization (CFO) algorithm 

Central Force Optimization, by contrast, is completely deterministic because it is based on 

the metaphor of gravitational kinematics, the branch of physics that computes the motion of 

masses moving solely under the influence of gravity. It comprises two simple deterministic 

equations based on the metaphor of gravitational kinematics. Because gravity is 

deterministic, so CFO’s equations are inherently deterministic. CFO’s deterministic nature 

is a major distinction setting which contrast it from other swarm intelligence (SI) algorithms 

such as Particle Swarm Optimization (PSO) and ant colony optimization (ACO), which are 

fundamentally stochastic. Their equations are formulated in terms of random variables, and 

removing randomness causes these algorithms to fail completely. While every ACO or PSO 

run is defaulted with the same sets of run parameters, the models generate an entirely 

different solution in each trial. But in CFO which is inherently deterministic, it is not 

necessary to characterize its performance statistically by making multiple runs and every 

CFO run with the same parameters leads to the same result. 
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CFO flies a set of probes through the space over a set of discrete time steps. A decision 

space is defined by min max

i i ix x x  , di=1, …, N  where '

i  x s  are decision variables and Nd 

is the number of dimension in decision space depending on the problem. The position vector 
p

jR specifies the location of each probe at each time step. Probe p’s position vector at step j 

in Nd dimensioned problem is given by: 

 

dN
p p,j

j i i

i=1

ˆR = x e  (11) 

 

Here p,j

ix is the coordinate of the probe p at the time j and iê  is the unit vector along the 

xi-axis. The indexes j, 0≤j≤Nt and p, 1≤p≤Np respectively, are the iteration number and 

probe number, with Nt and Np being the corresponding total numbers of time steps and 

probes. 

In CFO, each decision variable in objective function is a coordinate axis. The initial 

probes can be distributed via below five methods: 

Place the probes uniformly along each coordinate axes. 

Place the probes uniformly on a 2D grid (for 2-dimensional objective functions) 

Place the probes uniformly slightly off decision space diagonal 

Place the probes randomly in decision space 

User-defined method to distribute the probes in decision space 

Decision space diagonal length (DSDL) is defined as follow: 

 

 
dN

2
k,i p,i

j 1 j 1

i=1

DSDL= R R   (12) 

 

In metaphorical CFO space each of the Np probes experiences an acceleration created by 

the gravitational pull of masses in decision space which is the first of CFO’s two equations 

of motion. The total acceleration experienced by Probe p, which produced by each of other 

probes on it at step j-1 is given by: 

 

   
 p

k pN
α j 1 j 1p k p k p

j 1 j 1 j 1 j 1 j 1 β
k p

1
j 1 j 1

R R
a G U M M . M M

R Rk

k p

 

    


 



  


  (13) 

 

Here  
d

p p,j 1 p,j 1 p,j 1 p,j 1

j-1 1 2 2 N, ,M =f x x x (,. x. .,   
is the fitness at time step j-1 at probe p’s 

location. Each of the other probes also has associated with it the fitness 
k

j-1 pM ,k=1,2, ,p 1,p+1... .. .., ,N  Also ,  and G are the CFO constants which usually are 

equal to 2 as are in this study [19]. Also U is the Unit Step function which in maximizing 

the objective function is given by: 
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 
1                 if  x 0

U x
0             Otherwise


 


 (14) 

 

And 
k p

j 1 j 1R R   is the distance between the position of probes p and k which is given 

by: 

 

 
dN

2
k p k,m p,m

j 1 j 1 j 1 j 1

m 1

R R R R   



    (15) 

 

The acceleration 
p

j 1a   causes probe p to move from position 
p

j 1R   at step j-1 to position 
p

jR  

at step j according to the below trajectory equation which is CFO’s second equation of 

motion: 

 

p p p p 2

j j 1 j 1 j 1

1
R R V t a t   ,     j 1

2
         (16) 

 

where 
p

j 1V   is probe p's velocity at the end of time j-1 and t is the time step increment. 

Here for simplicity, 
p

j 1V  and t were considered to be zero and unity, respectively.  

Movement of each probe is restricted to the bounded feasible region. However, when 

some of probes fly out, a retrieving mechanism as below scheme is used to act on them and 

reposition them in feasible region: 

 

 p min p min min p

j,i i j,i i rep i j 1,iif    R x   then   R x F x R      (17) 

 p max p max p max

j,i i j,i i rep j 1,i iif    R x   then    R x F R x     (18) 

 

Here Frep is the repositioning factor and 0≤ Frep1. 

In this study as Formato proposed, at each step the current and previous 4 fitness values 

were stored in a 5-element array. The Frep parameter started at a value of 0.5 and was 

incremented by 0.005 whenever the absolute value of the difference between 5th array 

element and the average value of elements 3, 4, and 5 differed by less than 0.0005 (Fitness 

tolerance). If incrementing Frep in this manner resulted in Frep1, then it was reset to the 

starting value, and this procedure was repeated with the then current probe distribution. Fig. 

1 shows the flowchart of CFO algorithm. 

To evaluate CFO method for solving water network problem Ismail Abad network has 

been selected. CFO has been run to optimize the design cost of Ismail Abad network. The 

CFO variables and parameters have been set into the model. The values of max

ix and min

ix  are 

the maximum and minimum existing commercial diameters which have the same value in 
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all dimensions in this problem. 

 
Figure 1. CFO algorithm 

 

Therefore initial probes distribution using the above mentioned (a) and (c) methods make 

an improper probe distribution. In this study to overcome this challenge, a user-defined 

initial probes distribution used. In this regard commercial diameters in water distribution 

system considered as a permutation and generate probes via displacement diameter values in 

this permutation. This method has been used to place 42 probes (Np=42) in decision space 

and their initial acceleration vectors have been set to zero.  

Given the poor performance of CFO to optimize these networks, applying a few 

modifications on this method seemed required to have proper optimization in this kind of 

problems.  

The performance of the CFO algorithm has been evaluated in Ismail Abad networks. In 

this regards, CFO code was developed in MATLAB program and EPANET has been linked 

via the EPANET Toolkit. As to define the setting of the algorithm, the values of ,  and G 

constant parameters, Np and the initial acceleration vectors have been set same as in CFO 

and then applied the above mentioned User-defined probe distribution method.  

After first iteration of CFO, the new diameters, via a subscript which coded in Visual 

Basic program, replaced into the input file of EPANET to simulate the considered network. 

The constraints of the conservation of mass and energy (Eq. 1 and 2) are satisfied by 



OPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL… 

 

477 

EPANET. To check hydraulic constraints, another subscript code which was developed in 

Visual Basic program used to read output file of EPANET and specified hydraulic 

characteristics of the network.  

Then the velocity in each pipe and the pressure in each node compared with the 

constraints of these parameters and computed penalty values. So the objective function (Eq. 

10) evaluated for each probe and these fitness values compared with each other and the least 

value replaced to the best cost obtained have ever seen.  

To prevent disregarding of global best solution value have ever obtained (which happens 

in CFO), if the new fitness of the best probe become higher than previous one, it is ordered 

to keep unchanged. Thereafter CFO computed acceleration for each probe (Eq. 13). But 

since in this research minimizing an objective function is the main purpose, so U rectified as 

below formulation to pull and attract the probes out by other probes with lower mass while 

the previous studies [20, 21] have applied a negative sign on objective function. 

 

 
0                 if  x 0

U x
1             Otherwise


 


 (19) 

 

Since the acceleration values are big in the water distribution system problem and made 

all probes throw out of the decision space, the normalization method is applied to reduce 

them. The normalization method was not applied for zero acceleration values. The 

maximum and minimum bounds for normalization depend on the existing commercial 

diameters in the specified water distribution system.  

After normalizing accelerations with regards to the obtained acceleration values, probe 

positions have changed and then new diameters obtained (Eq. 16). The errant probes 

repositioned and returned to the decision space via mentioned method. The input file for 

EPANET updated using these new diameters. This process is continued until the number of 

iterations is reach to the maximum which in this research is 3500 (Nt = 3500).  

During running this process when most probes trapped in the local optimum solution and 

consequently acceleration values became zero, mutation operator act on the probes. In order 

that some probes mutated to the new positions which produced via applying Swap, Insertion 

and Reversion operators on the specified matrix. This matrix has obtained by replication the 

existing commercial diameters matrix sized by pipes quantity in the network. The mutated 

rate is considered as 15% herein. 

 

2.4 Differential evolution (DE) algorithm 

Differential Evolution (DE) algorithm is a branch of evolutionary programming developed 

by Rainer Storn and Kenneth Price for optimization problems over continuous domains [28, 

29]. In DE, each variable’s value is represented by a real number. The advantages of DE are 

its simple structure, ease of use, speed and robustness. DE is one of the best genetic type 

algorithms for solving problems with the real valued variables. Differential Evolution is a 

design tool of great utility that is immediately accessible for practical applications. DE has 

been used in several science and engineering applications to discover effective solutions to 

nearly intractable problems without appealing to expert knowledge or complex design 

algorithms. Differential Evolution uses mutation as a search mechanism and selection to 
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direct the search toward the prospective regions in the feasible region. Genetic Algorithms 

generate a sequence of populations by using selection mechanisms. Genetic Algorithms use 

crossover and mutation as search mechanisms. The principal difference between Genetic 

Algorithms and Differential Evolution is that Genetic Algorithms rely on crossover, a 

mechanism of probabilistic and useful exchange of information among solutions to locate 

better solutions, while evolutionary strategies use mutation as the primary search 

mechanism. 

Differential Evolution (DE) is a parallel direct search method which utilizes NP D-

dimensional parameter vectors. 

 

i,Gx ,   i=1,2,....,NP  (20) 

 

As a population for each generation G. NP does not change during the minimization 

process. The initial vector population is chosen randomly and should cover the entire 

parameter space. As a rule, we will assume a uniform probability distribution for all random 

decisions unless otherwise stated. In case a preliminary solution is available, the initial 

population might be generated by adding normally distributed random deviations to the 

nominal solution xnom,0. 

DE generates new parameter vectors by adding the weighted difference between two 

population vectors to a third vector. Let this operation be called mutation. The mutated 

vector’s parameters are then mixed with the parameters of another predetermined vector, the 

target vector, to yield the so-called trial vector. Parameter mixing is often referred to as 

“crossover” in the ES-community and will be explained later in more detail. If the trial 

vector yields a lower cost function value than the target vector, the trial vector replaces the 

target vector in the following generation. This last operation is called selection. Each 

population vector has to serve once as the target vector so that NP competitions take place 

in one generation. More specifically DE’s basic strategy can be described as follows: 

 

Mutation 

For each target vector
i,Gx ,   i=1,2,....,NP  , a mutant vector is generated according to: 

 

i,G+1 r1,G r2,G r3,GV  = x  + F × (x   x )  (21) 

 

With random indexes r1, r2, r3 {1, 2 … NP} integer, mutually different and F > 0. The 

randomly chosen integers r1, r2 and r3 are also chosen to be different from the running 

index i, so that NP must be greater or equal to four to allow for this condition. F is a real and 

constant factor [0, 2] which controls the amplification of the differential variation (xr2,G - 

xr3,G). Fig.2 shows a two-dimensional example that illustrates the different vectors which 

play a part in the generation of Vi,G+1. 
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Figure 2. An example of a two-dimensional cost function showing its contour lines and the 

process for generating Vi,G+1 

Crossover 

In order to increase the diversity of the perturbed parameter vectors, crossover is 

introduced. To this end, the trial vector: 

 

i,G+1 1i,G+1 2i,G+1 Di,G+1u =(u ,u ,...,u )  (22) 

 

Is formed, where: 

 

ji,G+1

ji,G+1

ji,G

V    if randb(j) CR  or   j=ranbr(i)
u = 

x      otherwise                                      

           j=1,2,...,D.



  (23) 

 

In Equation (23), randb(j) is the jth evaluation of a uniform random number generator 

with outcome [0; 1]. CR is the crossover constant [0; 1] which has to be determined by 

the user. ranbr(i) is a randomly chosen index1, 2, …, D which ensures that ui,G+1 gets at 

least one parameter from Vi,G+1. 

Selection 

To decide whether or not it should become a member of generation G+1, the trial vector 

ui,G+1 is compared to the target vector xi,G using the greedy criterion. If vector ui,G+1 yields a 

smaller cost function value than xi,G, then xi,G+1 is set to ui,G+1; otherwise, the old value xi,G is 

retained. 

 

ji,G+1 i,G+1 i,G

ji,G+1

ji,G

u    if    f(u ) f(x )
x =

x       if    otherwise    





 (24) 

 

Finally, this process continues to reach new generations to the number of NP. Then the 

same process is repeated to reach termination condition. 

Fig. 3 schematically overview of differential evolution algorithm for numerical model, 

the entire above process is specified numerically in this figure. 
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2.5 Mixed integer linear programming (MILP) 

In general, an optimization problem either linear or nonlinear consists of an objective 

function which is subjected to some constraints. The classical linear optimization method 

may results in a branch which consists of many pipe sizes. In practice, this is considered as a 

strong weak point. On the other hand, linear optimization methods yields pipe sizes which 

are not commercially available. This leads to choose the pipe size close to that obtained by 

optimization. Consequently, the hydraulic conditions and cost of the network system will be 

different from that obtained by the optimization technique which means that the design is 

not optimum any more. The developed model guarantees obtaining the global optimum of 

pressurized branched networks. 

 

 
Figure 3. Computational module for differential evolution algorithm 
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Shahinezhad [26] to ensure of performance the model, MILP model was used for Ismail 

Abad branch network. This study showed that MILP method, with the above objective 

function is the ability to provide absolute optimum for branch network.  

In this study, the CFO algorithm was implemented, in order to derive the optimal of 

water distribution networks by using CFO algorithm. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Case study 

The Ismail Abad network is located in 7 kilometers North West of Noorabad city in 

Lorestan province. Land area of this project is 1000 ha. Fig. 4 depicts the schematic network 

of Ismael Abad. This network consists of 18 pipes and 19 nodes are. In Table 1, the 

hydraulic details and arrangement of pipes for water distribution networks Ismael Abad is 

presented. 

 

 
Figure 4. Ismael Abad water distribution network 

 

This project consists of two kinds of steel pipe. Polyethylene pipe material is used for 

pipe sizes equal or less than 500mm and GRP for greater sizes. Pipe specifications are given 

in Table 2.  
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Table 1: Main and sub main pipe line data of Ismail Abad Network 

Pipe Pipe No. Length (m) Discharge (L/s) Beginning Elevation (m) End Elevation (m) 

Res.-J1 P1 - - - - 

J2-J3 P2 558 856.56 1791 1816.54 

J3-J4 P3 558 856.56 1816.54 1842.08 

J4-J5 P4 1430 429.8 1842.08 1847.57 

J4-J6 P5 955 52.9 1842.08 1838.71 

J4-J7 P6 1100 128.94 1842.08 1856.52 

J4-J8 P7 200 244.92 1842.08 1847.05 

J8-J9 P8 201 190.34 1847.05 1846.32 

J9-J10 P9 390 128.94 1846.32 1841.18 

J10-J11 P10 806 58.33 1841.18 1811.32 

J11-J12 P11 575 21.49 1811.32 1810.94 

J5-J13 P12 550 165.8 1847.57 1853.21 

J13-J14 P13 700 132 1853.21 1861.89 

J5-J15 P14 670 98.24 1847.57 1821.48 

J15-J16 P15 840 33.77 1821.48 1814.43 

J5-J17 P16 720 119.73 1847.57 1826.47 

J17-J18 P17 660 49.12 1826.47 1847.95 

J5-J19 P18 110 46.05 1847.57 1847.57 

 
Table 2: Pipe specifications data of Ismail Abad Network 

Cost ($/m) Outer diameter (mm) Internal diameter (mm) Material No. 

5.895 110 93.8 PE80 1 

7.895 125 106.6 PE80 2 

9.495 140 119.4 PE80 3 

12.375 160 136.4 PE80 4 

15.705 180 153.4 PE80 5 

19.305 200 170.6 PE80 6 

24.525 225 191.8 PE80 7 

30.150 250 213.2 PE80 8 

37.800 280 238.8 PE80 9 

47.700 319 268.6 PE80 10 

60.525 355 302.8 PE80 11 

76.725 400 341.2 PE80 12 

97.200 450 383.8 PE80 13 

108.820 500 426.4 PE80 14 

111.323 600 600.0 GRP 15 

137.997 700 700.0 GRP 16 

170.633 800 800.0 GRP 17 

204.289 900 900.0 GRP 18 

 

3.2 CFO algorithm result 

The convergence behavior of the CFO method to optimize pipe-sizing in Ismail Abad 

network has shown in Fig. 5. 
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Figure 5. Convergence behavior of CFO for Ismail Abad network 

 

Using CFO model the best cost obtained after 66,822 evaluation is 737,924$ which is 

fairly close to the best solution obtained by MILP technique. The algorithm makes 

relationship between EPANET and MATLAB software to optimize the water distribution 

network. The combination of optimum pipe diameter is shown in Table 3. 

This combination of optimal diameter is the best diameter to have the optimal costs. 

According to these network diameters, hydraulic conditions in Tables 4 and 5 are for pipes 

and nodes. 

 
Table 3. Optimum pipe diameter in central force optimization 

Pipe No. Pipe Optimum Diameter (inch) 
Internal Optimum 

Diameter (mm)  

Outer Optimum 

Diameter (mm) 

Res.-J1 P1 10.575 268.6 315 

J2-J3 P2 31.496 800 800 

J3-J4 P3 31.496 800 800 

J4-J5 P4 23.622 600 600 

J4-J6 P5 8.394 213.2 250 

J4-J7 P6 11.921 302.8 355 

J4-J8 P7 16.787 426.4 500 

J8-J9 P8 15.110 383.8 450 

J9-J10 P9 11.921 302.8 355 

J10-J11 P10 8.394 213.2 250 

J11-J12 P11 4.701 119.4 140 

J5-J13 P12 15.110 383.8 450 

J13-J14 P13 11.921 302.8 355 

J5-J15 P14 10.575 268.6 315 

J15-J16 P15 6.039 153.4 180 

J5-J17 P16 11.921 302.8 355 

J17-J18 P17 7.551 191.8 225 

J5-J19 P18 7.551 191.8 225 

Optimal cost ($) 737924 

8936 Runtime (s) 
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Table 4. Hydraulic conditions optimal diameters in pipes 

Pipe No. Pipe 
Optimum 

Diameter (mm) 

Discharge 

(L/s) 

Velocity 

(m/s) 

Losses in 1000 

(m) 

Res.-J1 P1 315 - - - 

J2-J3 P2 800 856.56 1.70 0.72 

J3-J4 P3 800 856.56 1.70 0.72 

J4-J5 P4 600 429.8 1.52 0.81 

J4-J6 P5 250 54.9 1.73 5.34 

J4-J7 P6 355 128.94 1.79 2.45 

J4-J8 P7 500 244.92 1.72 1.62 

J8-J9 P8 450 190.34 1.65 1.69 

J9-J10 P9 355 128.94 1.79 2.61 

J10-J11 P10 250 58.33 1.63 3.32 

J11-J12 P11 140 21.49 1.92 8.80 

J5-J13 P12 450 165.8 1.43 1.31 

J13-J14 P13 355 132 1.83 2.73 

J5-J15 P14 315 98.24 1.73 2.84 

J15-J16 P15 180 33.77 1.83 6.00 

J5-J17 P16 355 119.73 1.66 2.28 

J17-J18 P17 225 49.12 1.70 4.04 

J5-J19 P18 225 46.05 1.59 3.59 

 

Due to the hydraulic conditions in the pipes, it can be seen from Table 4, each pipe is in 

standard conditions and velocity in each pipe is in permitted range. Table 5 shows pressure 

in each node in permitted range. So it can be said in this optimized network the constraint of 

pressure and velocity is considered. 

 
Table 5: Hydraulic conditions optimal diameters in nodes 

No. Node Discharge (L/s) Hydraulic Elevation (m)  Pressure (m-water) 

Res. -856.69 1789.00 0.00 

J1 0.00 1788.71 -1.29 

J2 0.00 1926.02 134.69 

J3 0.00 1924.71 109.44 

J4 0.00 1920.27 80.98 

J5 0.00 1919.57 73.19 

J6 52.90 1906.13 71.73 

J7 128.94 1914.55 60.20 

J8 54.58 1922.32 80.93 

J9 61.40 1921.21 77.91 

J10 70.61 1917.86 79.37 

J11 36.84 1909.08 100.03 

J12 21.49 1892.48 84.97 

J13 33.80 1917.20 65.51 

J14 132.01 1910.93 50.48 

J15 64.57 1913.33 91.90 

J16 33.77 1896.79 83.39 

J17 70.61 1914.18 88.77 

J18 49.12 1905.42 59.08 

J19 46.05 1918.27 70.25 
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3.3 DE algorithm result 

F and CR Factor 

In the first step, to obtain the best conditions for algorithm that provide the most optimum 

and do not face local optimum problem, 18 combinations of different modes for the 

coefficients F and CR were examined. The results are shown in Table 6. 

The Results show that median values for the coefficients of F and Cr provide the 

optimum situation and cause DE algorithm not to be trapped in local optimum. The most 

optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. These 

values matched with the results of Suribabu [18]. 
Scale factor (F) can increase the accuracy of the search. The smaller coefficient, the 

shorter steps needs to be taken for an accurate research. But the problem is that the 

algorithm may be trapped in local optimum and it cannot be withdrawn. On the other hand, 

the higher value of F, the more area will be searched, but the best optimum situation may 

not be obtained. 

 
Table 6: Study F and CR 

No. Combination F Cr Optimal cost ($) 

1 F=0.1 Cr =0.1 115427393 

2 

F=0.5 

Cr =0.3 832628 

3 Cr =0.4 768561 

4 Cr =0.5 758917 

5 Cr =0.6 740000 

6 

F=0.6 

Cr =0.3 738039 

7 Cr =0.4 737931 

8 Cr =0.5 737920 

9 Cr =0.6 737992 

10 

F=0.7 

Cr =0.3 737924 

11 Cr =0.4 737988 

12 Cr =0.5 740588 

13 Cr =0.6 758028 

14 

F=0.8 

Cr =0.3 786416 

15 Cr =0.4 824850 

16 Cr =0.5 832628 

17 Cr =0.6 833455 

18 F=1 Cr =1 55293902 

 

Population and Generation 

After finding the best combination of coefficients values F and CR, algorithms for 

solving the independent populations were examined. For this purpose, the population of 4, 

25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). Fig. 6 

shows these results. 
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Figure 6. Optimization cost in different populations 

 

Based on the DE algorithm, the initial population is very important to select the initial 

three members, when the population gets more, the selection of four initial members has 

more variety, which causes the algorithm to reach convergence. 

According to Fig. 6, it is clear that by increasing population, the optimal cost will be 

lower. In addition, it is proved that the increasing population will extend the domain of the 

search; and more members are used for optimization. 

Finally, the best combination of coefficients and population were used to examine the 

effect of generations’ number, so ten generations (30, 40, 50, 100, 200, 300, 500, 1000, 

2000, and 3000) were studied. The results are shown in Table 7. 

Table 7 indicates that the generation number 200 is suitable for optimizing water 

distribution networks. This results show that DE algorithm for optimizing water distribution 

networks in the generation of 200 gives acceptable results. 

 
Table 7: The effect of generation on optimization cost 

No. Generation Optimal cost ($) Runtime (s) 

30 55293902 629 

40 2065347 780 

50 1222823 1005 

100 786416 1950 

200 737920 4024 

300 737931 6164 

500 737920 9324 

1000 737924 20163 

2000 737920 39826 

3000 737920 53911 

 

Table 7 indicates that the generation number 200 is suitable for optimizing water 

distribution networks. This results show that DE algorithm for optimizing water distribution 

networks in the generation of 200 gives acceptable results. 
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The increase in time per the number of population has almost a linear trend, which 

indicates the effect of population in the runtime algorithm. Hence specifying suitable 

population to obtain an optimal results is very important. 

The runtime algorithm for 100 members of population and 50 generations is 935s and 

100 generation is 1950s. According to the numbers, the running time of the algorithm to 

reach new member in each generation takes an average of 0.19s (Fig. 7). 

Results of Fig. 8 indicates a fairly linear relationship between runtime and number of 

generations. In general it can be said that the population and number of generations to run 

the algorithm, in order to optimize water distribution network is 100 and 200, respectively 

that requires nearly an hour to reach the optimal answer. 

 

 
Figure 7. Runtime in different population 

 

 
Figure 8. Runtime in different generation 
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So it can be revealed that one of the advantages of this algorithm is the high speed 

runtime. Another advantage is rapid convergence of the algorithm, that takes 16 minutes (G 

=50 and N =100) to reach convergence. 

 

Differential Evolution Algorithm Optimization 

The network has been optimized with conditions Cr=0.5, F=0.6, 100 members of 

population and 200 generations in the differential evolution algorithm. The algorithm makes 

relationship between Epanet and MATLAB software to optimize the water distribution 

network. The combination of optimum pipe diameter is shown in Table 8. 

 
Table 8: Optimum pipe diameter in Differential Evolution Algorithm 

Pipe No. Pipe 
Optimum Diameter 

(inch) 

Internal Optimum 

Diameter (mm)  

Outer Optimum 

Diameter (mm) 

Res.-J1 P1 10.575 268.6 315 

J2-J3 P2 31.496 800 800 

J3-J4 P3 31.496 800 800 

J4-J5 P4 23.622 600 600 

J4-J6 P5 7.551 191.8 225 

J4-J7 P6 11.921 302.8 355 

J4-J8 P7 16.787 426.4 500 

J8-J9 P8 15.110 383.8 450 

J9-J10 P9 11.921 302.8 355 

J10-J11 P10 8.394 213.2 250 

J11-J12 P11 4.701 119.4 140 

J5-J13 P12 15.110 383.8 450 

J13-J14 P13 11.921 302.8 355 

J5-J15 P14 10.575 268.6 315 

J15-J16 P15 6.039 153.4 180 

J5-J17 P16 11.921 302.8 355 

J17-J18 P17 7.551 191.8 225 

J5-J19 P18 7.551 191.8 225 

Optimal cost ($) 737920 

1:07:00 Runtime 

 

3.4 Comparison of CFO, DE, MILP and classical methods 

Shahinezhad [2010] optimize this network by using mixed integer linear programming 

method. In this paper the network is optimized by Central Force Optimization (CFO) and 

Differential Evolution Algorithm (DE), the results are compared with absolute optimum that 

is obtained from Mixed Integer Linear Programming (MILP) by shahinezhad. Table 9 

shows the results of optimizing from CFO, DE, MILP and classic method. 

In all optimization methods, the factor of time is important. MILP method to find 

absolute optimum needs more time than CFO, that it’s one of the disadvantages of this 

method. Although MILP Method achieves the absolute optimum, this method is not 

recommended in the engineering works that the time is important. The biggest problem in 

this method is that this method cannot be used in the loop network. So you cannot use this 

method to networks that combine the loop and branched network (complex network). 

In this study, we compared the CFO with this method, Therefore, According to great 
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potential of CFO, the algorithm can be used in the loop, branch and complex network. In 

Table 10 optimal cost obtained by each method can be seen. 

 
Table 9: Optimum diameter from CFO, DE, MILP method and classic method 

Pipe 
No. 

Pipe 

Optimum Diameter (mm) 

CFO Algorithm DE Algorithm Classic Method 
MILP 

Method 

Res.-J1 P1 - - - - 

J2-J3 P2 800 800 900 800 

J3-J4 P3 800 800 900 800 

J4-J5 P4 600 600 700 600 

J4-J6 P5 250 225 250 225 

J4-J7 P6 355 355 355 355 

J4-J8 P7 500 500 500 500 

J8-J9 P8 450 450 500 450 

J9-J10 P9 355 355 400 355 

J10-J11 P10 250 250 250 250 

J11-J12 P11 140 140 160 140 

J5-J13 P12 450 450 400 400 

J13-J14 P13 355 355 315 355 

J5-J15 P14 315 315 315 315 

J15-J16 P15 180 180 200 180 

J5-J17 P16 355 355 400 355 

J17-J18 P17 225 225 250 225 

J5-J19 P18 225 225 160 225 

 
Table 10: Inlet pressure head and network cost by CFO, DE, Classic method and MILP Method 

Cost ($) Inlet Pressure Head (m) Methods 

726463 139.66 Method MILP 

737924 134.69 CFO Algorithm 

737920 135.37 DE Algorithm 

825935 140 Classic Method 

 

According to Table 10, it can be said that algorithm presents very good results for 

optimizing water distribution network. So that Central Force Optimization estimates cost, 

%1.61 more than the lowest cost (MILP Method) and Differential Evolution algorithm 

estimates cost, %1.57 more than that. 

 

 

4. CONCLUSION 
 

In this study, to optimize water distribution network used CFO and DE algorithm. Since 

probes in the proposed CFO method share global and individual information, this method 

has been accounted as one of the intelligent swarm algorithms and having mutation operator 

enhance increasing the global exploration ability and convergence velocity. 

Conclusions show CFO runtime is less than the MILP method that provides absolute 

optimum. While optimization of CFO (737,924 $) is %1.61 more than the absolute optimum 
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that determined by the MILP method. Also, CFO estimates cost %10.61 less than classic 

method. 

In DE algorithm, the best scale and probability coefficients (F and Cr) are 0.6 and 0.5, 

respectively. About the initial population and the number of generations investigation 

revealed that the initial population of 100 members and generations 200 are the best, in 

terms of time and efficiency. 

While optimization of differential evolution algorithm (737,920 $) is %1.57 more than 

the absolute optimum that determined by the MILP method. Also, DE algorithm estimates 

cost %10.66 less than classic method. 

Conclusions show CFO algorithm runtime is less than DE algorithm and DE algorithm 

runtime is less than MILP method that provides absolute optimum. 

Another advantage of CFO and DE in comparison with MILP method is that CFO and 

DE can be used in the loop network and complex network. Whereas MILP Method is unable 

to solve loop and complex network (loop and branch).  

About major networks with many pipes, using CFO and DE is recommended compared 

with MILP method and other evolutionary algorithms, because of high-speed runtime and 

convergence to reach the optimum. 
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