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ABSTRACT 
 

Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in 

reliability analysis. However, the large number of samples, often required for acceptable 

accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS 

which has been proposed to reduce the computational time of MCS. In this paper, a new 

adaptive importance sampling-based algorithm applying the concepts of first-order reliability 

method (FORM) and using (1) a new simple technique to select an appropriate initial point as 

the location of design point, (2) a new criterion to update this design point in each iteration and 

(3) a new sampling density function, is proposed to reduce the number of deterministic 

analyses. Besides, although this algorithm works with the position of design point, it does not 

need any extra knowledge and updates this position based on previous generated results. 

Through illustrative examples, commonly used in the literature to test the performance of new 

algorithms, it will be shown that the proposed method needs fewer number of limit state 

function (LSF) evaluations. 
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1. INTRODUCTION 
 

In structural reliability analysis different examples of uncertainties are observed in material, 

loads and geometric properties. In such circumstances and to have a realistic understanding 

of a structure during its lifetime, uncertainty has to be taken into account. To do so, 

Structural reliability theory is exploited [1-5]. In the component reliability analysis, the main 

purpose is to evaluate the probability of failure, 
fP , by a multi-dimensional integral on the 

failure domain as 

 

( ) 0

( )f X

g X

P f X dX


   
(1) 

 

where  1 2, ,...,
T

nX X X X  represents the vector of random variables and ( )Xf X  is the 

joint probability density function (JPDF) of the vector of random variables. ( )g X  is the 

LSF such that ( ) 0g X   defines the safety domain and ( ) 0g X   defines the failure domain. 

However, the evaluation of the integration of Eq. (1) is so much difficult and complicated 

because of involving multiple integral and JPDF of random variables, especially for the 

large and complex structures with low probability of failure and implicit LSFs. In such a 

condition, other alternatives such as approximation methods and MCS have attracted more 

attention [6-14]. 

Approximation methods such as first- and second-order reliability method (FORM and 

SORM) are based on first- and second- order approximation of LSF at the design point, 

respectively. Design point which lies on the limit state surface and has the minimum 

distance from the origin of standard normal coordinate system (U-space), defined by 

Hasofer and Lind [15], has been also proved to be the most probable failure point (standard 

normal coordinate system is reached using the transformation ( )i i i iu x    ) [16]. This 

minimum distance is called reliability index and is denoted by   (it should be noted that 

LSF in standard normal coordinate system will be denoted by 
1g , hereafter). Approximation 

methods can work appropriately in many practical examples but they require a differentiable 

LSF which is an unattainable condition in many cases. 

In simulation methods, such as MCS, random samples are generated based on sampling 

density function and LSF is evaluated for the sample. Then, probability of failure given by 

MCS is considered the proportion of the number of samples corresponding to failure, i. e. 

negative value of LSF, to total sampling number. MCS does not need the mathematical form 

and derivation of LSF but the large number of simulations, needed to increase the accuracy, 

has become a big computational burden. That is why many researches have been focused on 

developing MCS by reducing the number of required random samples to make it more 

practical. On this way different sampling methods such as Latin Hypercube sampling [17], 

Antithetic Variates [11,18] and Importance sampling [19] can be named. Since importance 

sampling has been shown to be effective among different types of sampling, many 

researches has been focused on improvement of simulation with this technique of sampling. 
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One useful way to increase the efficiency of importance sampling method is obtained by 

means of the location of design point in the process of reliability analysis. Many methods 

with such an approach have been proposed that require the design point or the features of 

LSF [20-24]. Adaptive importance sampling method is another method which uses design 

point based on the results of previous deterministic analyses and without any need to the 

features of LSF and design point [25-27]. 

In this paper, a new method to improve the effectiveness of MCS has been presented. In 

this method, which falls into the class of adaptive importance sampling method and uses the 

concepts of FORM, a simple technique has been proposed to reach an appropriate initial 

design point from a random point. This initial point is then updated in each iteration, based 

on a simple proposed criterion. The sampling density function needed to generate random 

samples is chosen to have the same form as the probability density function (PDF) of 

random variables, but with different mean and standard deviation in each iteration. The 

aforementioned technique, criterion and sampling density function as the constituents of the 

proposed adaptive importance sampling-based algorithm are shown to be effective in 

improving the performance of MCS through numerical examples. 

 

 

2. IMPORTANCE SAMPLING 
 

The basic MCS computes the value of the multi-dimensional integral of Eq. (1) by 

generating random samples based on the distribution of random variables. Generating 

random samples on the whole random variable space without any focus or weight on 

different regions of the space causes the basic MCS to need a huge number of samples. This 

makes the basic MCS time-consuming and consequently impractical to many problems. 

Importance sampling method [12] represents one of the best ideas to decrease the number of 

random samples and increase the convergence speed. In importance sampling method, the 

integral of Eq. (1) is rewritten as 

 

( ) 0

( )
( )

( )

X
f X

Xg X

f X
P h X dX

h X


   (2) 

 

where ( )Xh X  is sampling density function. Now random samples are generated based on 

( )Xh X  and then probability of failure is calculated from 

 

1

( )1
( )

( )

n
X i

f i

i X i

f X
P I X

n h X

   (3) 

 

where the indicator ( )iI X  for safe and failure simulation is defined as 
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0 ( ) 0
( )

1 ( ) 0

i

i

i

g X
I X

g X


 


 (3) 

 
Different choices of ( )Xh X  can significantly affect the number of required random 

samples. It has been observed that locating the sampling density function around design 

point works properly. It was mentioned in the previous section that many methods applying 

this idea have been proposed, but they need the characteristics of LSF or design point which 

are both inaccessible in many cases. In such cases, adaptive importance sampling-based 

methods, which do not need these characteristics and work with knowledge obtained in 

previous deterministic analyses, can be good choices. In the following section, a new 

adaptive importance sampling-based algorithm with representation of a simple technique, 

criterion and sampling density function is proposed. 

 

 

3. PROPOSED ALGORITHM 
 

As was previously mentioned, the proposed importance sampling-based algorithm is made 

up of (1) a new technique to select an appropriate initial point as the location of initial 

design point, (2) a new criterion to update the design point in each iteration and (3) a new 

sampling density function to generate random samples. 

 

3.1 A new technique to select an appropriate initial point as the location of initial design 

point 

Initial design point in simulation methods plays a significant role. In fact, an appropriate 

initial design point can decrease the number of required random samples. If any random 

point is selected as the initial design point, it can lead to a lengthy and time-consuming 

analysis because this point determines the location of sampling density function and directly 

affects the sample generation procedure. This problem becomes bigger when the initial 

design point goes further from the LSF [27]. That is why in the proposed algorithm, a 

specific attention is allocated to the initial design point. 

Suppose the random point 
1P  is the first generated random point (initial random point). If 

this initial random point is closely located around the LSF, it is accepted as initial design 

point, otherwise it is moved to 
2P  which is to be closer to the LSF. This procedure will be 

continued until the point falls in the neighborhood of LSF with the acceptable distance. In 

fact, if 1( )ig P c  where c  is a predetermined relatively small value, it is considered 

closely located around LSF and thus selected as the initial design point. However, if 

1( )ig P c , we move from iP  to 1iP   on the line connecting iP  to the origin of coordinate 

system (Fig. 1). We call this line and the vector connecting the origin of coordinate system, 

O , to iP , direction line and direction vector ( iOP ), respectively. The represented 
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explanations mean that the initial point just moves on the direction line (in the positive or 

negative direction of the direction vector) until the acceptable distance is reached and then 

this point is selected as the initial design point. 

 

 
Figure 1. Movement towards limit state surface on the direction line and using the auxiliary 

point 

 

In order to build a formula by which the next point, 1iP  , can be obtained from the 

current point, 
iP , as it is seen in Fig. 1, we move 1 unit towards positive direction of iOP  to 

reach the following new point called auxiliary point, 
iA  

 

1 i
i i

i

OP
OA OP

OP
    (5) 

 

where .  denotes norm of the vector. Now by evaluating the function 
1g  in this point, we 

can have an understanding of the behavior and rate of change in 
1g . What we are looking 

for is the step size 
i  in 

 

1
i

i i i

i

OP
OP OP

OP
     (6) 

 

Such that the point 1iP   is located on the limit state surface. Since the change of 1 unit in 

the magnitude of direction vector iOP  results in the change of 1 1( ) ( )i ig A g P , considering 
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the linear behavior, 
i  is calculated as follows. 

 

1 1 1

1 1

( ) ( )

( ) ( )

i i
i

i i

g P g P

g A g P
  



 (7) 

 

Since 
1iP 
 is to be located on the limit state surface, i. e. 

1 1( ) 0ig P   , Eq. (7) can be 

rewritten as 

 

1

1 1

( )

( ) ( )

i
i

i i

g P

g P g A
 


 (8) 

 

Eq. (6), the elements of which are calculated from Eqs. (8) and (5), gives the next point 

1iP 
 in terms of the current point 

iP . It should be noted that since the above formulation has 

been completed by the assumption of linear behavior of the LSF, if it is nonlinear 
1 1( )ig P 

 

will not be zero and therefore the iteration of Eq. (6) should continue until our condition is 

satisfied and the acceptable distance is reached. This simple technique to bring the initial 

random point closer to LSF and selecting this point as the initial design point causes the 

sampling density function to be close to the border of safe and failure region and thus, 

compared to MCS, more random samples will fall into the failure region and this is one of 

the reasons the proposed algorithm imposes less computation cost. 

 

3.2 A new criterion to update the design point in each iteration 

In the previous part, we discussed that a good initial design point which is closely located 

around the border of safe and failure region can be a good start. However, since it is just 

close to this border and is not necessarily close to the real design point, it is not necessarily 

the best point. Thus, in order to make the algorithm more efficient, the initial design point 

needs to be updated. One possible criterion to update the design point is to select a point, in 

the next iterations, with (1) smaller distance to the origin and (2) smaller absolute value of 

1g  (both compared to the previous design point) as the new design point and not to change 

the design point if this point does not have these two features [27]. This criterion may work 

in many problems but it has a big drawback. In fact, if a design point at a specific step of the 

procedure, falls very close to the LSF such that at this design point 
1g  is very close to zero, 

it will be very difficult for other points to replace the previous design point although they are 

closer to the real design point. In such cases the new point may be closer to the real design 

point and have the first condition satisfied but since the absolute value of 
1g  at this point is 

not smaller than that at the previous design point, although it may be sufficiently small, the 

second condition is not satisfied and this point fails to become the next design point. Thus, 

one potentially good design point is missed because of the deficiency and inflexibility of the 

criterion. 

Our suggestion to avoid the above problem and make the criterion more flexible in 
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acceptance of new potentially good points as design points is to select a point with (1) 

smaller distance to the origin compared to the previous design point and (2) smaller absolute 

value of 
1g  compared to a specific number (we select 1 for this number) as the new design 

point. As it can be seen, these two conditions are very similar to the previous two conditions. 

The only difference is in the second condition where the absolute value of 
1g  is no longer 

compared to the previous design point. This seemingly small difference lets potentially good 

candidates, which are sufficiently close and not necessarily closer than the previous design 

point to the border, be selected. Thus, using our criterion to update the design point, the 

above mentioned drawback of inflexibility can be removed. 

 

3.3 A new sampling density function to generate random samples 

After selecting a point as design point (at the beginning or during the analysis), samples 

should be generated based on sampling density function. We determined the samples to have 

the same distribution as variables but not necessarily with the same means and standard 

deviations. At each step of the analysis, we consider the last design point the mean point of 

the sampling density function. Now, to complete the characteristics of sampling density 

function and to have a unique function, its standard deviation should be specified, too. Our 

suggestion for the standard deviation of sampling density function is the following 

descending linear function 

 

 1 1 0

1

1
n

i

n
    

 
    

 (9) 

 

where n  is the total number of samples, i  is the number of sample and 
0  is standard 

deviation of the random variables. 
1  and 

n  are introduced as two coefficients such that 

1 0   and 
0n   are standard deviations of sampling density function at the beginning and 

end of the analysis, respectively. We determine 
1  and 

n  to be min( )i   (reliability 

index until iteration i ) and 1 , respectively. This means for bigger reliability index, standard 

deviation is selected bigger to cover further space from the mean point. As it is seen, at the 

end of analysis, standard deviation reduces to 
0 . 

At this spot, all constituents of the proposed algorithm have been prepared. In the 

following section and through numerical examples, the represented formulation and 

suggestions are shown to be efficient in reducing the number of required random samples. 

But before going through numerical examples, the summary of the proposed method based 

on previous explanations, are expressed as the following step-by-step algorithm: 

1. Write the LSF in terms of the basic random variables, i.e. 1 2( , ,..., ) 0.ng x x x   

2. Use the transformation ( )i i i iu x     and write the LSF in terms of the variables of 

standard normal coordinate system, i.e. 1 1 2( , ,..., ) 0.ng u u u   

3. Generate a random point ( 1P ) and calculate the value of LSF ( 1g ) and distance to the 

center of standard normal coordinate system at this point. 
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4. If 1 1( )g P c  (we set 1c   in this paper), 
1P  is selected as initial design point and if 

1 1( )g P c  use the iterative formula of Eq. (6) until 1( )ig P c . Then 
iP  is selected as 

initial design point. 

5. Generate a random point according to the random variable PDF with the selected initial 

design point as its mean point and function of Eq. (9) as its standard deviation. 

6. Compute the value of LSF (
1g ) and distance to the origin of standard normal coordinate 

system at this point. 

7. If the value of LSF is negative, the value random variables samplingPDF PDF  is added to the failure 

number ( random variables samplingfailure number=failure number+PDF PDF ). 

8. If the absolute value of LSF is smaller than 1 and the distance to the origin is smaller 

than this distance for previous points, the new point and its distance to the origin are 

selected as new design point and new reliability index, respectively. 

9. Repeat steps 5 to 8 until all samples are generated. 

10. Compute probability of failure by dividing the failure number by the total number of 

samples. 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, several examples are selected from the literature to demonstrate the strong 

performance of the proposed method. 

 

Example 1 

In this example the LSF takes the following form 

 

1 2( ) 146.14g x x x   (10) 

 

where 
1x  and 

2x  follow normal distribution with statistics 
1 78064.4  , 

1 11709.7  , 

2 0.0104   and 2 0.00156  . The proposed method starts with the random point 

[0.1841,0.2652]Tz   with 0.3228   in standard normal coordinate system. Since LSF at 

this point is too large, i. e. 721.331 , which means the point is not closely located around 

LSF, the iterative process of Eq. (6) started to work and after 4  iterations brought the 

random point to [ 3.0789, 4.4349]Tz     where the value of LSF is 0.1278  and   is 

5.3988 . Locating the sampling density function at this initial design point, and putting 
1  of 

Eq. (9) equal to the reliability index (the minimum distance of all generated points at the 

spot), the algorithm continued the analysis and after only 175  iterations probability of 

failure was calculated 71.4691 10fP   , while using MCS, it takes more than 910  samples. 

This shows the strong performance of the proposed method and also the importance of the 

location of sampling density function and initial design point. 
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Example 2 

The LSF of this example is expressed as 

 

2 1 2
1 2

( )
( ) 0.1( ) 2.5

2

x x
g x x x


     (11) 

 

where 
1x  and 

2x  both have standard normal distribution. Starting with the initial random 

point [ 0.5083, 0.8911]Tz     with 
1 3.5042g  , the proposed algorithm reaches the initial 

design point [1.2157,2.1314]Tz   with 1 0.2171g   after 2  iterations. By means of this 

initial design point, the proposed algorithm takes 423  iterations to give 0.0041fP  , while 

this number for MCS is 27096  iterations. This big difference is also a sign of improvement 

of the proposed algorithm compared to MCS. 

 

Example 3 

The LSF of this example is defined as follows 

 

2 1 2
1 2

( )
( ) 0.5( ) 3

2

x x
g x x x


      (12) 

 

where 
1x  and 

2x  both follow standard normal distribution. After 3  iterations, the initial 

random point [0.1045, 0.9461]Tz    with 1 3.0432g   was brought to the initial design point 

[0.3292, 2.981]Tz    with 1 0.6038g   . In the proposed algorithm and using the initial 

design point to locate the sampling density function, 139  iterations are required to compute 

probability of failure 0.1057fP  . However, MCS gives the answer after more iterations, i. 

e. 942  iterations. 

 

Example 4 

The LSF considered in this example has the following form 

 
2 3

2 1 1( ) 2 0.1 0.06g x x x x     (13) 

 

with standard normal random variables. In the proposed algorithm after 202  iterations 

0.0352fP   is reached, while in MCS the number of required iterations is 2734 . This result 

in the proposed algorithm, is obtained after passing from the initial random point 

[0.6294,0.8116]Tz   with 1 1.1638g   to the initial design point [1.5156,1.9542]Tz   with 

1 0.025g   by 1  iteration. Thus, it can be mentioned this is another example of the 

suitability of our algorithm. 
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Example 5 

Consider the following LSF 

 
4

1 2 1 2( ) 2.5 0.2357( ) 0.00463( 20)g x x x x x       (14) 

 

where 
1x  and 

2x  both have normal distribution with the same statistics 10   and 3  . 

In the proposed algorithm 1633  iterations are required to compute 0.0028fP  . This number 

compared to the corresponding number in MCS, i. e. 36835 , shows the power of the 

proposed algorithm in reaching the answer. 1  iteration, to bring the initial random point 

[ 0.8403,0.7059]Tz    with 
1 3.5935g   to the initial design point [1.9174, 1.6106]Tz    

with 
1 0.0086g   was a huge contribution in creating this difference. 

 

Example 6 

The LSF of this example including 6 random variables has the following form 

 
6

1 2 3 4 5 6

1

( ) 2 2 5 5 0.001 sin(100 )i

i

g x x x x x x x x


         (15) 

 

where 
1x  to 

6x  are random variables with statistics as shown in Table 1. The proposed 

algorithm started the reliability analysis of the above LSF with the initial random point 

[ 0.7091,0.2993, 0.6125,0.8005,0.9606,0.0791]Tz     with 1 186.7901g   and after 1  

iteration could bring this point closer to limit state surface and give the initial design point 

[ 2.3011,0.9712, 1.9875,2.5973,3.117,0.2567]Tz     with 
1 0.0061g   . This movement 

towards the limit state surface and getting closer to this surface caused the proposed 

algorithm to compute the probability of failure 0.0127fP   after 3402  iterations, while 

MCS uses 7655  iterations to give the answer. 

 
Table 1: Statistics of random variables in example 6 

Variable Mean Standard deviation Distribution 

1x  120  12  Lognormal 

2x  120  12  Lognormal 

3x  120  12  Lognormal 

4x  120  12  Lognormal 

5x  50  15  Lognormal 

6x  40  12  Lognormal 

 

Example 7 

The LSF of this example is defined as 
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9
2

10

1

( ) 2 0.015 i

i

g x x x


    (16) 

 

where 
1x  to 

10x  have standard normal distribution. After 1  iteration, the initial random 

point [0.6294,0.8116, 0.746,0.8268,0.2647, 0.8049, 0.443,0.0938,0.915,0.9298]Tz      with 

1 1.131g   changed to 

[1.5414,1.9874, 1.8268,2.0245,0.6482, 1.9711, 1.0848,0.2296,2.2407,2.2768]Tz      

as the initial design point with 
1 0.0879g  . This helped the proposed algorithm to reach 

0.0053fP   using 5013  iterations, instead of 17830  iterations used in MCS. 

 

Example 8 

Consider the conical structure of Fig. 2 subjected to a compressive axial load P  and a 

bending moment M  [28]. 

The geometrical and mechanical features of the structure are presented in Table 2 and are 

defined as independent normal variables. The main phenomena that can involve the failure 

of the structure are (1) the loss of strength of the structure and (2) the buckling of the 

structure due to instability. For the loss of strength, according to the large margin obtained in 

the analysis, this failure mode shall not be analyzed. It is only the buckling of the structure 

that will be analyzed under the combined solicitations. According to NASA space vehicles 

design rules [28] the buckling criterion is 

 

 
Figure 1. The conical structure of Example 8 

 

1
cr cr

P M

P M
   (17) 

 

where 
crP  and 

crM  are critical axial load and bending moment (for buckling), respectively. 

According to NASA [28]. 



M.A. Shayanfar, M.A. Barkhordari and M.A. Roudak 

 

104 

2 2

2

2 cos

3(1 )
cr

Et
P

 






 (18) 

2 2

1

2

cos

3(1 )
cr

Et r
M

 






 

(19) 

 

where   and   enable to correlate theoretical results with experimental ones ( 0.33  , 

0.41   according to NASA [28]). According to Eqs. (17)-(19), the LSF of the structure is 

 

2

2 2

1

3(1 )
( ) 1

cos 2

P M
g x

Et r



   

 
   

 
 (20) 

 

MCS needs more than 710  iterations to compute 75.232 10fP   , while the proposed 

algorithm uses 5785  iterations to give the answer. This is done by passing from the initial 

random point [0.1376, 0.0612, 0.9762, 0.3258, 0.6756,0.5886]Tz       with 
5

1 5.0337 10g     to the initial design point 

[4.9157, 2.1863, 34.8624, 11.6335, 24.1287,21.0193]Tz       with 1 0.0254g   after 4  

iterations. 

Thus, this is another example showing the strength of the proposed algorithm in 

complicated examples. 

 
Table 2: Statistics of random variables in example 8 

Variable Mean Standard deviation Distribution 

(MPa)E  70000  3500  Normal 

(m)t  0.0025  0.000125  Normal 

(rd)  0.524  0.01048  Normal 

1(m)r  0.9  0.0225  Normal 

(Nm)M  80000  6400  Normal 

(N)P  70000  5600  Normal 

 

The results of these examples are summarized in Table 3. These results indicate that the 

proposed algorithm is very efficient and therefore it can be used instead of MCS. As it can 

be seen in Table 3, the number of required iterations to find probability of failure is smaller 

than that in MCS. Last column of the table shows a huge reduction in deterministic analyses 

as a huge success of the proposed algorithm in making the simulation methods more 

practical. This is generally because the initial point is more appropriately selected and the 

concentration of sampling is on more important regions, i. e closer to limit state surface and 
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design point. On this way, the represented technique, criterion and sampling density function 

of this paper have given a significant contribution to make the proposed algorithm more 

efficient. 

 
Table 3: Comparison of results in examples 1 to 8 

Example Probability of failure 
Iterations 

MCS Proposed algorithm Difference 

1 71.4691 10  910  175  910  

2 0.0041 27096  423  26673  

3 0.1057  942  139  803  

4 0.0352  2734  202  2532  

5 0.0028  36835  1633  35202  

6 0.0127  7655  3402  4253  

7 0.0053  17830  5013  12817  

8 75.232 10  710  5785  710  

 

 

5. CONCLUSION 
 

In this paper, a new reliability algorithm, utilizing the concepts of importance sampling and 

FORM, has been proposed. In this algorithm, the computational cost is not large and there is 

no need to derivative of limit state function. This is because of adding a technique, a 

criterion and a sampling density function which all try to generate samples around the border 

of safe and failure region. These properties have led to the aforementioned reliability 

algorithm the power of which in considerable reduction of the number of required samples 

has been shown in illustrative numerical examples. 
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