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ABSTRACT 
 

This study investigates the efficacy of optimal semi-active dampers for achieving the best 

results in seismic response mitigation of adjacent buildings connected to each other by 

magnetorheological (MR) dampers under earthquakes. One of the challenges in the 

application of this study is to develop an effective optimal control strategy that can fully 

utilize the capabilities of the MR dampers. Hence, a SIMULINK block in MATLAB 

program was developed to compute the desired control forces at each floor level and to the 

obtain number of dampers. Linear quadratic regulator (LQR) and linear quadratic Gaussian 

(LQG) controllers are used for obtaining the desired control forces, while the desired voltage 

is calculated based on clipped voltage law (CVL). The control objective is to minimize both 

the maximum displacement and acceleration responses of the structure. As a result, MR 

dampers can provide significant displacement response control that is possible with less 

voltage for the shorter building. 
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1. INTRODUCTION 
 

Various types of control devices have been widely utilized as supplemental damping 

strategies in order to mitigate the effects of earthquakes and high wind load on civil 
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engineering structures [1-7]. Dampers have been used onto structures as paramount interest 

over the past two decades. These dampers include fluid visco-elastic dampers [8-11], friction 

dampers [8-11], active devices [12-15] and semi-active magnetorheological (MR) dampers 

[16-19]. Westermo [20] was the first to propose the concept of linking the podium structure 

to the main buildings for avoiding the pounding effects. Westermo [20] found that this 

concept can be applied to mitigate the problem of pounding between the podium structure 

and the main building. Dyke et al. [21], Ni et al. [22] and Yoshida and Dyke [23] have 

investigated the effectiveness of magnetorheological (MR) dampers for civil engineering 

structures. Despite the recent development of control strategies like semi-active control, 

research in the area of passive and active structural control is still continuing [24]. 

Recent generation of the optimization approaches are being widely used for solving 

complex problems in structural engineering [25-30].Optimizing the use of dampers to 

mitigate seismic damage has hitherto not been investigated in spite of enhancing structural 

control concepts in the structural vibration control through the application of optimization. 

Luco and De Barros [31] investigated the optimal damping values for the distribution of 

passive dampers interconnecting two adjacent structures. In general, analytical and 

experimental studies have investigated the dynamic responses of the structures before and 

after installing a damping device to understand their effectiveness. However, very few 

studies have been undertaken with regard to the effect of non-uniform distribution of the 

dampers [10, 12, 32, 33]. None of these studies show a clear comparison in order to indicate 

the quality of their own proposed arrangement/solution. For example, Bhaskararao and 

Jangid [12] proposed a parametric study to investigate the optimum slip force of the dampers 

in the responses of two adjacent structures. The authors also showed that the response 

reduction is associated with optimum placement of damper. 

Control algorithms developed for passive, semi-active and active control have been 

directly useful for developing other recent control strategies. The most common optimal 

control algorithms such as Linear Quadratic Regulator (LQR), 
2

LQGH (Linear Quadratic 

Gaussian), H2, H  and fuzzy control can be chosen. Ahlawat and Ramaswamy [34] 

proposed an optimum design of dampers using a multi-objective version of the GA. 

Although a passive control technique is still considered due to its simplicity, semi-active and 

active control systems nowadays have received considerable attention. Arfiadi and Hadi [35] 

improved a simple optimization procedure with the help of genetic algorithms (GAs) to 

design the control force. They used a static output feedback controller utilizing the 

measurement output. In this case, the control force is obtained by multiplying the 

measurement with the gain matrix [35]. The performance of the controllers used in this 

study is also compared under two optimization controls. The aim is to obtain the optimum 

controller for MR dampers by using LQR and 2H LQG  strategies. The responses of the 

adjacent buildings are compared with the corresponding uncontrolled individual buildings. 

Numerical results of adjacent buildings controlled with MR dampers and the corresponding 

uncontrolled result are examined and compared with nonlinear control algorithms. 
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Figure 1. n and m storey shear buildings with MR dampers 

 

 

2. THEORETICAL BACKGROUND OF SYSTEM MODEL 

 
Consider two n and m storey shear buildings with semi-active dampers installed between 

them as shown in Error! Reference source not found.. Equations of motion of the adjacent 

buildings are shown in Eqs. (1) and (2). Equations of motion for the adjacent buildings 

having flexible columns and mass concentrated at the rigid slabs can be obtained by writing 

the equilibrium equations from the free body diagram of each of the lumped mass of the 

building. 

Equation of motion of Building A: 

 

1 1 1 1 1 1 1 1 gM X C X K X M E X   
 

(1) 

 

Equation of motion of Building B: 

 

2 2 2 2 2 2 2 2 gM X C X K X M E X   
 

(2) 

 

Eqs. (1) and (2) should be solved simultaneously. When semi-active control is 

considered, a convenient matrix form can be developed by first combining these equations 

thus leading to the expression 

 

d(m,m) (m,s) d(m,m)

1 11 1

(s,m) (s,m) (s,m)
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                
    

(3) 
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Equations of motion in Eq. (3) can be transformed into first order state equations. d(m,m)c

and d(m,m)k are diagonal matrices of the additional damping and stiffness matrices due to the 

instillation of the MR dampers. The subscript of s  in Eq. (3) denotes the  n m  difference 

of the number of storey levels of both buildings. By defining the state vector

 
T

1 2 1 2X X X X X , 

 

a

1

1 1 (n m) (n m) (n m) (n m)

1 1

2 2

2

(n m) n(n m) 1

1 1

P
M E 0

, ,A0
M E M K M C

P

00
E ,B

M M

Ι     

 

  

 

 
    

               

  
    

    

 
(4) 

 

where 1E  and 2E  are n 1  and m 1  unity matrices, respectively. 1P  and 2P  are 

dimensional matrices based on the number of actuators of the additional dampers. m denotes 

the storey number of the lower building. Here, I is an identity matrix and 0 in matrix   is a 

 a
s n  matrix containing zero.

 

T
1 i m

mr mr mr mrF f f f     
is control input vector.  

 

   mr g

w w mr

m m m mr

X AX BF t EX t

x C X D F

y C X D F v

  

 

  

 (5) 

 

In which my is the vector of measured outputs, x  is the regulated output vector and v  is 

the measurement noise vector. Since only earthquake loading is considered without MR 

dampers, the equations of motion can be written as 

 

 gX AX EX t   (6) 

 

Eq. (6) defines the uncontrolled adjacent buildings system in order to understand the 

efficiency of MR dampers between both buildings. 

 

 
Figure 2. Modified Bouc- Wen model for MR damper [36] 
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3. DYNAMIC MODEL OF MR DAMPER FORCES 
 

The modified Bouc-Wen model as shown in Error! Reference source not found. is used to 

simulate the dynamic behaviour of the MR damper as [36] 

 

 i

mr 1 i 1 i n i 0c y k x x xf    
 

(7) 

 

where the internal pseudo-displacement, iy  and the evolutionary variable, diz  are given by 

 

 
    i di 0 n i i 0 n i i i

0 1

1
y z c x x k x x y

c c
       



 
   d dn 1 n

di n i i i di di n i i i di c n i i iz x x y z z x x y z A x x y


             

(8) 

 

where n ix   and ix are the displacements of the thi floor of Building B and Building A, 

respectively. The displacement of the MR damper ix  is computed using the relative 

displacement between two inline adjacent floors ( i ). 0x  is the initial displacement of spring 

of the accumulator stiffness 1k . 0k  is the stiffness at large velocities. 0c  and 1c  are viscous 

damping coefficients at large velocities and for force roll-off at low velocities, respectively. 

  is the evolutionary coefficient. Other shape parameters of the hysteresis loop are shown 

as c dA n, , and  in Eq. (8). In this model, the following three model parameters depend on 

the command voltage u to the current driver are expressed as follows: 

 

a b iu    ; 1 1a 1b ic c c u  ; 0 0a 0b ic c c u   (9) 

 

Eq. (10) simulates the dynamics involved in both reaching rheological equilibrium and 

driving the electromagnet in the MR damper. The dynamics are accounted for through the 

first order filter 

 

 i iu u v    (10) 

 

where iu is given as the output of a first-order filter which models delay dynamics of the 

current driver and of the fluid to reach rheological equilibrium. iv is a command input 

voltage supplied to the damper at the i th floor.
i

mrf  is the damper force at the i th floor level 

between the buildings. Parameters of the MR dampers used in this study were obtained by 

Spencer et al. [36] and are shown in Error! Reference source not found.. 
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Table 1: Parameters of Bouc-Wen phenomenological model parameters for 1000 kN MR 

dampers [33, 36] 

Parameter Value Parameter Value 

C0a 50.30 kN sec/m 𝛼𝑎  8.70 kN/m 

C0b 48.70 kN sec/m/V 𝛼𝑏  6.40 kN/m/V 

k0 0.0054 kN/m 𝛾 496.0 m-2 

C1a 8106.2 kN sec/m 𝛽 496.0 m-2 

C1b 7807.9 kN sec/m/V 𝐴𝑐  810.50 

k1 0.0087 kN/m 𝑛𝑑  2 

X0 0.18 m 𝜂 195 sec-1 

 

 

4. OPTIMAL CONTROLLER DESIGN 
 

For the optimization of semi-active control problems between adjacent buildings, several 

optimization methods based on the chosen objective function have been synthesized in this 

study. H


and LQR norms are used to obtain the optimum damper parameters. 

 

4.1 H∞ Optimization 

To quantify the transfer functions H∞ norm is usually used. In H∞ controllers, the objective 

is to minimize the infinity norm of the transfer function from external disturbances to the 

regulated outputs. The H∞ norm can be performed into the iterative manner [35]. In this 

case, Hamiltonian matrix can be defined as 

 

   

1 T 1 T

w

T
T 1 T 1 T

w w w

A E D C E E

C I D D C A E D C

R R
=

R R

 

 

 
 
    
 

H  (11) 

 

where 
2 TI D DR    . In this study, eigenvalues of this matrix in Eq. (11) are symmetric 

about the real and imaginary axes with D=0. The H∞ norm can be computed in the following 

bisection algorithm 

Select u l,   so that l uĜ     

If  u l l     specified level (Tol.)  

Yes Stop (  u l

1
Ĝ

2
     ) 

Otherwise go to Step (3) 

Set  u l 2      and test if Ĝ    using  i H  

If  i H  jℝ, then set l   , otherwise set u    and go to Step (2) 

The resulting   is the H∞ norm to be determined. In the numerical solution, the 

computation of H∞ norm in bisection algorithm can be obtained by using norm commands in 
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the MATLAB Control System Toolbox [37]. The damper parameters were then solved using 

genetic based optimizer. Note that the displacements and velocities of the adjacent buildings 

can be included to the controlled output defined in Eq. (5). By choosing the appropriate entry 

in the regulation matrix, certain regulated output that needs to be minimized can be imposed. 

For example, if the regulated output is taken as the relative displacement and velocities of the 

floors of both buildings with respect to the ground, matrix Cw can be chosen as 

 

 

 
w m

w m

C C

D D 0

 

 

I
 (12) 

 

where I is a    2n 2m 2n 2m    identity matrix, 0 and 0 denote as  2n 2m 1   vector 

and    2n 2m m   matrix containing zeros, respectively. n and m are total degrees of 

freedom of both Building A and Building B. The optimization problem is to find the 

optimum damper parameters that minimize H  in GA is used in the optimization tool. 

 

4.2 LQR Optimization 

The clipped-optimal control method is to solve an optimal control problem and to calculate 

the optimum force. For this purpose, LQR and 2 LQGH strategies are common in optimal 

control problems. Firstly, a LQR algorithm with full state feedback is employed in this 

study. For designing a LQR controller, the aim is to minimize the quadratic performance 

index 
T T

mr mr

0

1
x x F F dt

2
J Q R



     subject to state Eq. (5) without external excitation taken 

as the constraint [38]. Here, both Q  positive semi-definite state and R  the positive control 

input weighting matrices are for the vector of regulated responses, x  in Eq. (5) and of 

control forces,
mr

F  respectively. Optimal control force vector can be written as [39, 40] 

 
T 1

df B PX X   R K  (13) 

 

where P is the solution of the algebraic Riccati equation as shown in Eq. (14). 

 
T T 1 T

w wPA A P C C PB B P 0Q R
     (14) 

 

For multiple MR dampers being considered, the control input is a vector, i.e. 

 
T

df d 1 di dmf f f  and  RR  . K is the full state feedback gain matrix for the 

deterministic regulator problem. However, the number of sensors should be limited for 

economical reasons, the need of the output feedback, where not all states are available, is 

more pronounced [41]. 
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4.3 LQG optimization 

Many states in realistic systems are not easily measurable. The optimal controller in Eq. (13) 

is not implemental without the full state measurement [38, 42]. Hence, in this study a 

2 LQGH  controller is also employed as a nominal controller and the results are compared 

with the corresponding LQR controller. A state estimate can be formulated as X that 

d
f X K remains optimal based on the measurements [38]. Further, in the design of the 

2 LQGH  controller, the ground acceleration input, gx  is taken to be a stationary white 

noise. An infinite horizon performance index is chosen as

T T

m m mr mr

0

1
E y y F F dtJ Q Rlim





 
      
 . Both Q  and R  weighting matrices are for the vector 

of measured responses, 
m

y  in Eq. (5) and of control forces,
mr

F  respectively. 

 

 
T

diag K M

r K

Q

R



  
 (15) 

 

For design purposes, the measurement noise is assumed to be identically distributed, 

statistically independent Gaussian white noise processes with
g g i ix x gS S 50v v    , where 

g gx x
S are 

i i
S

v v
 the auto spectral density function of ground acceleration and measurement 

noise. The nominal controller is represented as [43] 

 

   

 

g m g m g m mr

T

g m

X A L C X L y B L D F

L C S

    


 (16) 

 

where S  is the solution of the algebraic Ricatti equation given in Eq. (18). X is the optimal 

estimate of the state space vector, X . g
L is the gain matrix for state estimator with the state 

observer technique, which is determined by solving an algebraic Riccati equation in the 

control toolbox in MATLAB [37]. 

 
T T T

m m g0 SA AS SC C S EE      (17) 

 

Based on selected displacement and velocity measurements, a Kalman filter is used to 

estimate the states. In order to produce an approximately desired control force,
d

f  a force 

feedback loop is appended for inducing the MR device. A linear optimal controller  c
K s is 

designed that provides the desired control force,
d

f  based on the measured responses,
m

y  and 

the measured force,
mr

F  as follows 
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  m1

d c

mr

y
f

F
L K s L

    
     

    
 (18) 

 

where  L .  is the Laplace transform. Although the controller  c
K s can be obtained from a 

variety of synthesis methods, the 2 LQGH strategies are conducted herein due to the 

stochastic nature of earthquake ground motions and because of their successful application 

in other civil engineering control applications [22, 42, 44]. Note that the damper is driven by 

the applied command input voltage, v. The states i.e.  dx y z, , ,u  are obtained via 

integration of Eqs. (5), (8) and (10) using MATLAB module ode45 based on the 4th/5th -

order Runge-Kutta method. Then, available damper force, 
T

1 i m

mr mr mr mrF f f f    and 

the desired force df  are obtained via Eqs. (7) and (13), respectively.  

 

 
Figure 3. Semi-active control block diagram of LQR–CVL and 2 LQG CVLH   

 

4.4 CVL control 

The schematic for implementations of LQR–CVL and LQG CVL are illustrated in Error! 

Reference source not found.. Inverting the damper dynamics to obtain command voltage 

for a desired force is not possible from Eqs. (8), (9) and (10). The first method is based on 

LQR–CVL and the second method is based on 2 LQG CVLH  . Hence, two methods are 

used to obtain the voltage, v  as described below. Nonlinear force of damper is not directly 

controllable and applied voltage to the current driver can only be adjusted to reach the 

desired control force at each time step. The applied voltage is set after computation of the 

optimal control force by a predefined control algorithm according to feedback data and 

measurement of the damper force at each time in order to approach the MR damper control 

force to the desired optimal force. The input voltage, v, to the damper is obtained using the 

CVL [22] as described below. If these two forces are equal then the applied voltage is not 

changed. If the absolute of MR damper force is less than the absolute of the calculated 

optimal control force and both of them have the same sign, the applied voltage should be 

increased to its maximum value. Otherwise, the input voltage is set to zero. Clipped-optimal 

method can be summarized in the following equation.  
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  d mr mrv V f F FHmax 
 

(19) 

 

where Vmax shows the maximum applied voltage that is associated with saturation of 

magnetic field in MR damper and H . is the Heaviside function. The voltage applied to the 

MR damper should be Vmax  when H . is greater than zero. Otherwise, the command 

voltage is set to zero. Error! Reference source not found. shows a block diagram of the 

clipped optimal semi-active control system. The feedback for the controller is based on 

displacement measurements. 

 

 

Figure 4. Block diagram of semi-active control system using 2H LQG  controller 

 

 

5. SOLUTION PROCEDURE 
 

A numerical example for adjacent buildings is performed on i7-2630QM @2.9 GHz 

computer running MATLAB R2011b. The MATLAB numeric computing environment is 

integrated into the SIMULINK block to simulate either LQR or
2

LQGH  controller. 

 

 

6. NUMERICAL STUDY 
 

A system of buildings located adjacent to each other and interconnected by MR dampers is 

considered to obtain the optimal semi-active control strategies. Building A is a 20-storey 

shear building discussed in Bharti et al. [33] and Ok et al. [32]. A 10-storey building 

discussed in Pourzeynali et al. [45] is taken as Building B. The adjacent buildings are 

subjected to four earthquake ground motions El-Centro 1940, Kobe 1995 scaled to 0.8 g and 

0.3 g, Sakarya 1999 and Loma Prieta 1989. The structural parameters having mass, stiffness 
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and damping coefficient are shown for both buildings in Error! Reference source not 

found.. 
Table 2: The structural parameters of both buildings in numerical examples 

Floor (i) 

Building A Building B 

mi (t) 
Ki×10

6
 

(kN/m) 

ci×10
3
 (kN 

sec/m) 
mi (t) 

Ki×10
5
 

(kN/m) 

ci×10
3
 (kN 

sec/m) 

1 800 1.4 4.375 215 4.68 1.676 

2 800 1.4 4.375 201 4.76 1.648 

3 800 1.4 4.375 201 4.68 1.585 

4 800 1.4 4.375 200 4.5 1.585 

5 800 1.4 4.375 201 4.5 1.539 

6 800 1.4 4.375 201 4.5 1.539 

7 800 1.4 4.375 201 4.5 1.539 

8 800 1.4 4.375 203 4.37 1.539 

9 800 1.4 4.375 203 4.37 1.099 

10 800 1.4 4.375 176 3.12 1.146 

11 800 1.4 4.375    

12 800 1.4 4.375    

13 800 1.4 4.375    

14 800 1.4 4.375    

15 800 1.4 4.375    

16 800 1.4 4.375    

17 800 1.4 4.375    

18 800 1.4 4.375    

19 800 1.4 4.375    

20 800 1.4 4.375    

 

 

7. RESULTS OF ADJACENT BUILDINGS CONNECTED WITH MR 

DAMPERS 
 

The peak top floor displacement, the peak top floor acceleration, the peak storey shear and 

the peak base shear are obtained with passive-off and passive-on cases which are with 

constant zero voltage and with constant maximum applied voltage (i.e., 3, 6 and 9 V), 

respectively and compared with semi active control cases based on LQR  and LQG. Error! 

Reference source not found. shows the time response histories of top floor displacement of 

both buildings based on the considered four control strategies under the four different 

earthquakes and compared to uncontrolled case. In time variation responses, the Kobe 1995 

earthquake scaled to 0.3 g is used in order to compare explicitly with other earthquakes 

considered in this study. As shown in Error! Reference source not found. (a), passive-on 

and semi-active based on both the LQR and LQG norms result in good agreement compared 

to passive-off under El-Centro 1940 and Sakarya 1999 earthquakes while all control 

strategies have the same trend in Kobe 1995 and Loma Prieta 1989 ground motions.  

It is observed from Error! Reference source not found. (b), that all control strategies 

reduce the top floor displacement of Building B under all the considered earthquakes. In 
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terms of reduction of displacement responses, the performance of the control strategies in 

the lower building (Building B) is better than the higher building (Building A). Error! 

Reference source not found. indicates the time response histories of the top floor 

acceleration of Building A and Building B. The results in Error! Reference source not 

found. (a) indicate that for all control strategies the overall trend is similar to the 

uncontrolled case in Building A. Error! Reference source not found. (b) shows that 

semiactive controller based on LQG norm is effective in response mitigations for the lower 

building. The acceleration response reduction of Building B is higher under semiactive 

compared to passive-on strategy, except that under the 1999 Sakarya earthquake semiactive 

has the same trends with passive-off and on strategies. Although the response history of the 

top floor acceleration in the higher building is similar in passive-off and passive-on 

strategies, a comparative performance of the four strategies in Building B can be slightly 

observed in terms of acceleration responses. 

 

 
Figure 5. Time response of top floor displacement of a) Building A b) Building B 
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Figure 6. Time response of top floor acceleration a) Building A b) Building B 

The response histories of the normalized base shear of both buildings are investigated in 

Error! Reference source not found.. The base shear of each building is normalized with 

the corresponding building weight. Therefore, the normalized base shear response of 

Building A is explicitly smaller than the normalized base shear response of Building B. 

Further, Error! Reference source not found. (a) indicates that semiactive controllers are in 

good agreement in the mitigation of the base shear. All controllers are showing better 

performance compared to the uncontrolled case in Kobe 1995 and El-Centro 1940 

earthquakes. Although the MR dampers work as passive devices with the maximum damper 

command voltage (6V) under passive-on strategy, the response histories in terms of the 

normalized base shear in Error! Reference source not found. (a) are almost matching with 

the uncontrolled case. It is observed from Error! Reference source not found. (b), increase 

in base shear response is noted for Building B under passive-on strategy for Sakarya 1999 

earthquake while all control strategies exhibit better control performance for the other three 

earthquakes.  

After the comparative time history response plots, another comparative performance of 

the four control strategies is conducted in terms of the peak floor displacement acceleration 

and storey shear force based on the storey levels of both buildings. Error! Reference 

source not found. shows the peak floor displacement of Building A and Building B. It is 

noted from Error! Reference source not found. (a), that the control performance of both 

passive-on and semiactive controllers is better than passive-off. Under passive-on strategy, 

peak floor displacements of Building A in Kobe 1995 earthquake are not good in terms of 

displacement reduction. The results of semiactive control strategies in Error! Reference 

source not found. (a) and Error! Reference source not found. (b) are almost matching for 

both buildings. Similarly, the overall trend in terms of semiactive controllers is similar for 

the shorter building in Error! Reference source not found. (b). Under Sakarya 1999 and 

El-Centro 1940 earthquakes, passive-off strategy provides the best reduction compared to 

semiactive controllers. The displacement response mitigation for the higher floors of 

Building B is higher under semiactive compared to passive control strategies and the 
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uncontrolled case.  

 

 
Figure 7. Time response history of base shear of a) Building A b) Building B 

 
Figure 8. Peak floor displacement of a) Building A b) Building B 
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Figure 9. Peak floor acceleration of a) Building A b) Building B 

 

 
Figure 10. Peak storey shear of a) Building A b) Building B 

 

Error! Reference source not found. shows the peak floor acceleration based on storey 

levels. It is observed from Error! Reference source not found. (a), that the control strategies 

are not showing better results compared to the uncontrolled case based acceleration reduction 

for the higher building (Building A). Increase in acceleration response is noted for higher 

floors under all control strategies for Kobe 1995 earthquake. On the other hand, all control 

strategies in acceleration response reduction for Building B are effective as depicted through 

Error! Reference source not found. (b). Semiactive controller based on LQR is showing 
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better mitigation than semiactive based on 2H LQG  for Building B. The acceleration 

reduction of the shorter building (Building B) is higher than the taller building (Building A). 

Further, it is interesting that passive-on strategy in Error! Reference source not found. (b) is 

showing better response in terms of mitigation of the peak floor acceleration than semiactive 

and passive-off strategies. 

 

 
Figure 11. The Behaviour of MR damper under a) 1940 El-Centro earthquake b) 1995 Kobe 

earthquake scaled to 0.8g 

 
Figure 12. The Behaviour of MR damper under a) 1999 Sakarya earthquake b) 1989 Loma Prieta 

earthquake 

 

Error! Reference source not found. shows the performance of the four control 

strategies in terms of storey shear for Building A and Building B. The overall best control 
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performance is observed under semiactive controllers for all considered ground motion, 

especially in Sakarya 1999 for Building A and in Kobe 1995 for Building B. Passive-on 

strategy for Building A in Kobe 1995 and Building B in Sakarya 1999 is not effective to 

reduce the storey shear. For Building A, Kobe 1995 and Loma Prieta 1989 earthquakes 

show increase in storey shear with increasing storey levels. This is due to the fact that the 

sway of Building A is abruptly restricted by Building B as it suffers high storey shear above 

the tenth floor. Hence, this limitation results in an increase in displacement response of 

Building A under passive-on strategy in Kobe 1995 and Loma Prieta 1989 earthquakes as 

depicted in Error! Reference source not found. (a). In Error! Reference source not 

found. (b) reduction in response for Building B is observed under all considered 

earthquakes, except to Sakarya 1999 ground motion. Passive-on and semiactive controllers 

showed a better control of response as shown in Error! Reference source not found. (b). 

Hysteresis behaviour of MR damper placed at the 10th storey level between the buildings 

under four control strategies, namely, passive-off, passive-on, semiactive-LQR and 

semiactive- 2H LQG  for the four different earthquakes is shown in Error! Reference 

source not found. and Error! Reference source not found.. It is observed that there is a 

significant energy dissipation in terms of displacement and velocity responses of MR 

damper in semi-active based on LQR and LQG norms compared to passive-on  V 6Vmax   

and passive-off strategies. This study also investigated the influence of damper location and 

command voltage required for MR damper. In order to show the effectiveness of MR 

dampers for inter-connecting the 10th floors of two buildings having different 

characteristics, the numerical model is used for the two damper locations and for three 

values of command voltage (3V, 6V and 9V).  

 

 
Figure 13. Control performance of MR dampers with uniform input voltages under the 1995 

Kobe earthquake scaled to 0.8g (Uz and Hadi 2013) 
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The command voltages of MR dampers at each of the ten floors between the buildings 

are determined by the two proposed methods (LQR and LQG optimizations). Optimal input 

voltage distribution of fixed number of dampers is provided in this numerical example and 

compared to other control strategies. Five MR dampers installed at each of the ten floors in 

the numerical example. All 50 dampers have the same input voltage. Nonlinear random 

vibration analyses using the 4th order Runge Kutta method is performed while varying the 

uniform input voltage from 0 to 10 V, which leads to the variation of the damping capacity 

of the MR dampers. Error! Reference source not found. shows the maximum root-mean-

square (r.m.s.) values of inter-storey drifts of the coupled systems by varying the uniform 

input voltage of MR damper under El-Centro 1940 and Kobe 1995 earthquakes. For 

decreasing the maximum inter-storey drift of the adjacent system, it is explained that an 

optimal value for the uniform input voltage of the MR dampers exists in a coupled structure 

system. In this numerical example, the optimal input voltage of the MR dampers is 5.6 V for 

the uniform distribution of the 50-MR damper system in Kobe 1995 earthquake, while the 

optimal input voltage is 3.1 V in El-Centro 1940 earthquake. Using the MR damper is 

important in damping capacity that can be easily adjusted by modulating the input voltage, 

without costly replacements or adjustments. In other words, varying the input voltages of the 

dampers is feasible in order to achieve an optimal performance. Hence, the results of the 

peak top floor displacement, acceleration and normalized base shear of the adjacent 

buildings using the optimum uniform voltage (OUV) is evaluated with the other control 

strategies used in this study. It is observed from Error! Reference source not found. that 

the overall displacement response reduction with passive-on strategy is as much with 

semiactive controllers except for passive-off for Building B in El-Centro 1940 earthquake.  

 

 

 
Table 3: Peak top floor displacement under different control strategies 

Earthquakes Building UNC Off 
Passive-on LQR – CVL H2/LQG - CVL 

OUV 
3V 6V 9V 3V 6V 9V 3V 6V 9V 

El centro, 

1940 

A 26.6 22.9 20.1 19.0 19.8 21.8 21.2 20.7 21.6 20.9 20.4 20.2 

B 17.1 8.1 8.6 10.4 11.5 8.4 8.6 8.7 8.6 9.1 9.6 8.8 

Kobe, 1995 
A 61.3 59.4 57.4 58.0 59.2 56.0 55.2 54.8 57.4 56.7 56.3 58.0 

B 48.0 35.0 25.6 30.6 32.9 29.6 27.5 26.0 30.5 27.7 25.5 30.7 

Note: The displacement indicated is in × 10mm. UNC: incontrolled 

 

Further, the results from Error! Reference source not found. show that there is not 

necessary to provide high command voltage for MR dampers and significant displacement 

response control is possible with less voltage in Building B. Using the optimum uniform 

voltage (OUV), the significant reduction for both buildings is observed under El-Centro 

1940 earthquake although these proposed methods are not effectives in both buildings under 

Kobe 1995 earthquake. In Error! Reference source not found., the top floor drift inter-

storey responses show that the percentage reductions for Building A under passive-on 

strategy as compared to the uncontrolled case are: 8.0 under both the earthquakes. For 

Building B, the corresponding response reductions are 43.9 and 27.9 for El-Centro 1940 and 

Kobe 1995 earthquakes, respectively. However, marginal increase in response is seen under 
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semiactive controllers (9V) for Building B under El-Centro 1940 earthquake. Error! 

Reference source not found. shows that the percentage reductions in peak normalized base 

shear under passive-on strategy (6V) for both buildings are: 20 and 29.8 and under 

semiactive based on the reductions are 20 and 44 with El-Centro 1940. 

 
Table 4: Peak top floor drift inter-storey under different control strategies 

Earthquakes Building UNC Off 
Passive-on LQR – CVL H2/LQG - CVL 

OUV 
3V 6V 9V 3V 6V 9V 3V 6V 9V 

El centro, 

1940 

A 0.25 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.23 

B 0.41 0.26 0.23 0.28 0.31 0.29 0.37 0.43 0.33 0.41 0.51 0.32 

Kobe, 1995 
A 0.88 0.83 0.81 0.84 0.87 0.75 0.74 0.75 0.81 0.82 0.83 0.84 

B 1.54 1.19 1.11 0.98 1.07 0.84 0.99 1.21 0.84 0.88 1.02 1.35 

Note: Peak top floor drift inter – story indicated is in × 10mm. UNC: Uncontrolled 

 
Table 5: Peak normalized base shear under different control strategies 

Earthquakes Building UNC Off 
Passive-on LQR – CVL H2/LQG - CVL 

OUV 
3V 6V 9V 3V 6V 9V 3V 6V 9V 

El centro, 

1940 

A 0.20 0.19 0.17 0.16 0.16 0.18 0.17 0.17 0.17 0.16 0.16 0.17 

B 0.57 0.28 0.35 0.40 0.40 0.29 0.30 0.31 0.29 0.32 0.35 0.35 

Kobe, 1995 
A 0.40 0.40 0.41 0.42 0.43 0.39 0.39 0.38 0.38 0.37 0.37 0.42 

B 1.56 1.10 0.71 0.90 1.00 0.88 0.80 0.76 0.94 0.83 0.74 0.88 

 

 

8. CONCLUSIONS 
 

For enhancing the seismic performance of two adjacent buildings, an optimal design method 

for nonlinear hysteretic dampers is proposed. The stochastic linearization method helps 

estimate the stochastic responses of adjacent buildings coupled with nonlinear dampers in an 

efficient manner. As a result, the optimal design process can avoid numerous nonlinear time-

history analyses. The numerical example of 10- and 20-storey buildings coupled with MR 

dampers demonstrate that providing high command voltage is not necessary based on 

effectiveness of MR dampers. Moreover, the proposed optimal design approach can 

systematically achieve enhanced seismic performance with economical efficiency. 

 

APPENDIX I- NOTATIONS 
 

A  = system matrix in state space equation 

cA  = hysteresis loop parameters 

a  = constant value 

ja  = each random number (j= 1, 2, .. popsize) between 0 and 1 

a0 b0a a,
 

= proportional coefficients of Building A and Building B, respectively 

B  = system matrix in state space equation 
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a0 b0b b,  = proportional coefficients of Building A and Building B, respectively 

C  = damping matrix 

pC  = constant value (1 or 2) 

wC
 = regulation matrix 

1C  = damping matrix of Building A 

2C  = damping matrix of Building B 

dc  = damping of the damper 

0c  = hysteresis loop parameters of MR damper 

0ac  = hysteresis loop parameters of MR damper 

0bc  = hysteresis loop parameters of MR damper 

1c  = hysteresis loop parameters of MR damper 

1ac  = hysteresis loop parameters of MR damper 

1bc  = hysteresis loop parameters of MR damper 

D  = zero matrix in Hamiltonian 

wD
 = regulation matrix 

id  = inter-storey drift of the i th floor in controlled system 

dmax  = the peak uncontrolled floor drift 

E  = system matrix in state space equation 

1E  = vector representing the influence of the related earthquake to Building A 

2E  = vector representing the influence of the related earthquake to Building B 

F  = fitness function 

df  = desired force matrix at the damper 

dif  = desired force at the 
thi  damper 

mrf  = force matrix at the damper 

Ĝ  = transfer function 

Ĝ  = H  norm of Ĝ  

pG  = individual in the population 
pi

rjg  = one variable in pG  

2H  = control algorithm 

H  = control algorithm 

H
 

= Hamiltonian 

 H  = Heaviside function in Matlab 

jh  = bit string no. (j+1) starting from right 
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si  = index 

I  = identity vector 

, II  =    n m and 2n 2m   identity matrices, respectively 

J  = objective function 

J  = performance index 

1J  = objective function to be minimized the displacement responses 

2J  = objective function to be minimized the inter-storey drift responses 

sj  = index 

K  = stiffness matrix of all system 

K  = gain matrix 

1K  = stiffness matrix of Building A 

2K  = stiffness matrix of Building B 

dk  = stiffness of the damper 

0k  = hysteresis loop parameters of MR damper 

1k  = hysteresis loop parameters of MR damper 

iL  = lower bound value of design variable 

ml  = length of sub-chromosome 

M  = total mass matrix 

1M  = mass matrix of Building A 

2M  = mass matrix of Building B 

m
 

= number of floors in Building B 

i jm m,  = mass    i 1 2 n j 1 2 m       , , .., , , ..,   

am  = number of measurements 

dN  = total number of dampers at all floors 

n  = number of floors in Building A 

an  = number of actuators 

nbits  = number of bits 

dn  = hysteresis loop parameters of MR damper 

rn  = random number 

P  = Riccati matrix, matrix of Lyapunov equation 

iP  = significant digit 

1P  = control force location matrix of Building A 

2P  = control force location matrix of Building B 

cp  = crossover rate 
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mp  = mutation rate 

Q  = state weighting matrix 

jq  = probability of crossover 

R  =unit matrix having a random coefficient 

R  = scalar control force weighting matrix 

R  = control force weighting matrix 

ir  = real number of a design variable 

S  = solution of the algebraic Ricatti equation 

g g i ix x
S S,

v v  = spectral density function of acceleration and measurement noise 

s  = difference between the number floors of both buildings 

s  = Laplace variable 

t  = time 

it  = integer mapping of a binary string 

iU  = upper bound value of design variable 

u u,  = control voltage and output of a first-order filter 

Vmax  = maximum voltage 

v  = input voltages of the first order filter 

v  = measurement noise vector 

X X X, ,  = total displacement, velocity and acceleration matrices, respectively 

1 2X X,  = displacement matrix of Building A and Building B, respectively 

1 2X X,  = velocity matrix of Building A and Building B, respectively 

1 2X X,  = acceleration matrix of Building A and Building B, respectively 

gX  = acceleration vector of the related earthquake 

xmax
 = maximum displacement of the uncontrolled system 

i ix x,  = displacement and velocity of the 
thi floor level, respectively 

0x  = initial displacement of the damper 

my
 = vector of measured outputs 

i iy y,
 = internal pseudo-displacement 

di diz z,
 

= evolutionary variable 

a b, ,  
 

= hysteresis loop parameters of MR damper 

c  
= weighting coefficient (1 or 2) 


 = hysteresis loop parameters of MR damper 

u l, ,  

 

=a random number, upper bound and lower bound of a positive number 
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ai aj

bi bj

,

,

 

   = structural modal frequencies of modes i and j of both buildings 

ai aj

bi bj

,

,

 

   = structural damping ratios for modes i and j of both buildings 

  =constant to scale the fitness function 


 = time constant of the first-order filter 

  = system matrix in state space equation 

  = vector representing the influence of the related earthquake to all system 

0
 

= zero matrix 
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