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ABSTRACT 
 

This paper presents an efficient optimization procedure to find the optimal shapes of double 

curvature arch dams considering fluid–structure interaction subject to earthquake loading. 

The optimization is carried out using a combination of the magnetic charged system search, 

big bang-big crunch algorithm and artificial neural network methods. Performing the finite 

element analysis during the optimization process is time consuming. Back propagation 

neural network is utilized to reduce the computational burden. A real-world arch dam is 

considered as a numerical example to demonstrate the efficiency of the proposed method. 

The numerical results reveal the computational advantages of the new method for optimal 

design of arch dams. 
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1. INTRODUCTION 
 

In recent years, there has been an increasing interest to find optimal designs of double 

curvature arch dams. Generally, optimization of an arch dam involves obtaining a scheme 

with minimum concrete volume while it is subjected to behavioral, geometric and stability 

constraints. This process needs high computational cost from both structural and 

optimization point of view. 

An arch dam has a complicated geometry. Besides, fluid-structure interaction has 

significant effect in stress distribution on it. Structural dynamic analysis of an arch dam 

subjected to earthquake loading requires time-consuming finite element analysis. In recent 
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studies, to avoid the complexity of the problem some simplifications are involved. In the 

number of studies, the arch dam is considered with empty reservoir [1, 2] and in some others 

reservoir’s effect is simplified by added mass approach [3, 4] which overestimates the 

hydrodynamic effects in the dam body [5].  

In addition to structural computational burden, optimization of the arch dam may also 

need thousands of fitness function evaluations by performing a FE analysis of the dam at 

each evaluation. This proves the necessity of presenting a robust methodology, which not 

only is effective but also needs least computational efforts. To date, some researches have 

been carried out using a combination of optimization and neural networks to find the optimal 

shape of arch dams with empty reservoir and frequency constraints [2, 6]. Metaheuristics 

and neural networks are also utilized considering frequency instead of stress constraints for 

shape optimization of arch dams in [7].  

The magnetic charged system search (MCSS) is a metaheuristic optimization technique 

which recently proposed by Kaveh et al. [8] and it is an improved version of the standard 

CSS [9]. In the MCSS, magnetic forces are considered in addition to electrical forces using 

the Biot-Savart law [10]. This additional force provides useful information for the 

optimization process and enhances the performance of the CSS algorithm [8]. The big bang-

big crunch (BBBC) is another metaheuristic approach that is based on one of the theories of 

evolution of the universe with the same name [11]. 

The back propagation neural network (BPNN) is one of the artificial neural network 

(ANN) algorithms that was first introduced by Paul Werbos in 1974. In general, the BPNN 

is a supervised learning method that works by forwarding the output layer to the input layer 

in changing the weights. Furthermore, the BPNN works like humans in which learning is 

performed through examples and exercises in each layer of the ANN.  

In this study, an efficient and robust methodology is presented to find the optimal shape 

of double curvature arch dams considering hydrodynamic effects resulting from dam-

reservoir interaction under seismic loading. To reduce the computational time, the 

optimization task is performed using a hybridized MCSS, BBBC and BPNN method. BPNN 

is used as an alternative for the exact FE analyzer. The concrete volume of dam body is 

considered as the objective function and the geometrical parameters will be its design 

variables. The constraints are Willam-Warnke failure criterion for stress state as well as 

some geometric and stability constraints. The effectiveness of proposed methodology is then 

evaluated for a well-known benchmark arch dam and the results are compared to those of 

other meta-heuristic methods documented in literatures. 

 

 

2. ARCH DAM OPTIMIZATION PROBLEM 
 

2.1 Mathematical model and optimization variables 

The optimization problem can formally be stated as follows: 

 

Find: 1 2 3 n[ , , ,...,x ]x x xX  (1) 

Minimize: ( ) ( ) ( )penaltyMer f f X X X  (2) 
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Subject to: 
min max

( ) 0, 1,2,..., ki

i i i

g i

x x x

 

 

X
 (3) 

 

where X  is the vector of design variables, ig is the thi constraint from k inequality 

constraints and ( )Mer X  is the merit function; ( )f X  is the objective function which 

generally is to minimize the construction cost of the dam. In Eq. (2), ( )penaltyf X  is the 

penalty function which results from the violations of the constraints corresponding to the 

response of the arch dam. Also, minix and maxix are the lower and upper bounds of design 

variable vector. Exterior penalty function method is employed to transform the constrained 

dam optimization problem into an unconstrained one as follows:  

 

2

1

( ) 1 max(0, ( ))
k

penalty p

i

f gj


  X X  (4) 

 

where 
p is the penalty multiplier. 

A combination of concrete volume and casting area of dam body can be considered as the 

objective function [6]. However, since the variation of casting area between various designs 

is negligible (about one percent), it can be omitted in optimization process. So in this study, 

just the concrete volume of the dam is considered as the objective function: 

 

     , ,u d

A

v y x z y x z dA X  (5) 

 

in which A is an area produced by projecting the dam body on a  xz plan;  ,uy x z  and 

 ,dy x z  are parabolas of upstream and downstream surfaces of the arch dam, respectively. 

As shown in Fig. 1, the shape of the horizontal section of a parabolic arch dam is determined 

by these two parabolas as follows [12, 13]:  

 

 
 

 
2

,
2

u

u

x
y x z g z

r z
   (6) 

 
 

   
2

,
2

d c

d

x
y x z g z t z

r z
    (7) 

 

where  ur z  and  dr z  are radius of curvature for upstream and downstream curves and 

 ct z  is thickness of crown cantilever at z direction, respectively. By dividing the dam 

height into n  segments ( 1n   controlling levels) and specifying the uir  , dir  and cit , which 

denote the related values of the ur , dr  and ct  at controlling levels, these values can be 

interpolated according to following equations of the nth order: 
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  (8) 

   
1
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n

d i di

i

r z L z r




  (9) 

   
1

1

n

c i ci

i

t z L z t




  (10) 

 

where,  iL z  is a Lagrange interpolation formula: 

 

 
1

1

n
m

i
m i m

m i

z z
L z

z z











  

(11) 

 

In Eqs. Error! Reference source not found. and Error! Reference source not found., 

 g z  is a polynomial of second order to define the curve of upstream boundary of crown 

cantilever (Fig. 2) and is determined as follow: 

 

  2

2
g z z z

h





   (12) 

 

where cot   is slope of overhang at crest, h is dam height and the point where the slope 

of the upstream face equals to zero is z βh . 

 

2.2 Design variables 

The most effective parameters for creating the arch dam geometry were mentioned in 

Section 2.1. These parameters can be adopted as design variables, as: 

 

 1  1   1 1 1 1                     n n ntc tc ru ru rd rd       X    (13) 

 

in which X  contains  2 3 1   n  shape parameters of arch dam where, n is number of 

divisions along the dam height. 
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Figure 1. Crown Cantilever profile of the arch dam 

 
Figure 2. Parabolic shape of an elevation of the arch dam 

 

2.3 Design constraints 

Design constraints are divided into some groups including the behavioral, geometrical and 

stability constraints. In most of the existing studies, the separate restrictions of the principal 

stresses were considered as the behavior constraints. In this study, the behavior constraints 

are defined to prevent the crash and crack of each element (e) of the arch dam under 

specified safety factor  sf  in all time steps of a specified earthquake. For this purpose, the 

Willam and Warnke [14] failure criterion of concretes due to a multi-axial stress state is 

employed. Thus, time dependent (t) behavior constraints for the dam body are expressed as: 

 

, , ,

1,2, ,   1,( , ) 0 2,, , ,
c fe t e t

e

c fe t

F SF S
e n t T

f
gb

s
e x t

f s

  
 

 
    

 
    

   

 (14) 

 

where F  is a function of the principal stress state  1 2 3         and S is the failure 

surface expressed in terms of principal stresses containing: uniaxial compressive strength of 

concrete ( )cf ; uniaxial tensile strength of concrete ( )tf ; and biaxial compressive strength of 

concrete ( )cbf . In the above relationship, T is the earthquake duration. According to four 

principal stress states compression-compression-compression, tensile-compression-

compression, tensile-tensile-compression and tensile-tensile-tensile, the failure of concrete is 

categorized into four domains. In each domain, independent functions describe F  and the 

failure surface, S . For instance, in the compression-compression-compression regime F
and S are defined as: 

 

     
1

2 2 2 2

1 2 2 3 3 1

1

15
F            

 
 (15) 

     

   

1

2 2 2 2 2 2 2
2 2 1 2 1 2 2 1 1 1 2

22 2 2

2 1 2 1

2 cos 2 4 cos 5 4

4 cos 2

r r r r r r r r r r r
S

r r r r

 

 

      
 

 
 (16) 

 

where the angle of similarity 0 60   describes the relative magnitudes of the principal 

stresses as:  
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     

1 2 3

1
2 2 2 2

1 2 2 3 3 1
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
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 


     
 

 
(17) 

 

The parameters 1r  and 2r  represent the failure surface of all the stress states with   0   

and   60  , respectively, and these are functions of the principal stresses and concrete 

strengths  ,   ,  c t cbf f f . The details of the failure criterion can be found in Ref. [14]. 

Therefore, Eq. (Error! Reference source not found.) is checked at the center of all dam 

elements (ne) for the earthquake loading [15]. If it is satisfied, there is no cracking or 

crushing. Otherwise, the material will crack if any principal stress is tensile, while crushing 

will occur if all principal stresses are compressive. The most important geometrical 

constraints are those that prevent from intersection of upstream face and downstream face, 

as:  

 

    1 0, 1,2,..., ( 1)di
di ui

ui

r
r r i n

r
       (18) 

 

where dir  and uir  are the radii of curvatures at the down and upstream faces of the dam at 

ith level in the z direction, respectively and n is number of divisions along the dam height. 
The geometrical constraint applied to facilitate the construction is defined as: 

 

1 0                               alw

alw


 


     (19) 

 

where   is the slope of overhang at the downstream and upstream faces of dam and alw is 

its allowable value. Usually alw  is taken as 0.3, [13].  

 

 

3. THE FINITE ELEMENT MODEL OF AN ARCH DAM  
 

The Morrow Point double curvature arch dam is analyzed to assist the validation of the finite 

element model utilized in this study (Fig. 3). This dam has been studied by many 

researchers, so the results can be verified with already published material. This dam is 

located on the Gunnison River in Montrose Country near the village of Cimarron, Colorado. 

The dam has 142.65 m high and 220.68 m long along the crest and its thickness varies from 

3.66 m at the crest to 15.85 m at the base level. The geometric properties of the dam in 

details can be found in [16]. The physical and mechanical properties involved here are the 

concrete density (2483 N.s2/m4), the concrete poison’s ratio (0.2) and the concrete elasticity 

(27580 MPa). In this analysis, hydrodynamic effects of dam-reservoir interaction are 

considered. The dam body is discretized with two hundred and eighty 8-node solid elements 
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including 495 nodes for the dam body and one thousand and four hundred 8-node fluid 

element including 2145 nodes for the reservoir has been developed. This number of nodes 

and elements are not constant during the optimization process due to changes in dimensions 

of the arch dam and mesh generation in every analysis, so it will be varied when required. 

The arch dam is analyzed as a 3D-linear structure and the natural frequencies from the other 

literature and the present work are provided in Table 1. It can be observed that a good 

conformity has been achieved between the results of the present work with those of the 

reported in the literature. 

 

 
Figure 3. Finite element model of Morrow Point dam 

 
Table 1: Comparison of the natural frequencies from the literature with FEM 

mode  (Tan and Chopra, 1996)  (Duron and Hall, 1988)  Present work 

 
 Empty Full  Full  Empty full 

 FEA  FEA experimental  FEA 

1  4.27 2.82  3.05 2.95  4.2897 2.9607 

2  - -  - 3.3  - 3.3046 

3  - -  4.21 3.95  - 4.2425 

4  - -  5.96 5.4  - 4.9522 

5  - -  - 6.21  - 6.1156 

 

 

4. UTILIZED ALGORITHMS  
 

As mentioned before, in this paper, a powerful advanced algorithm are employed for optimal 

design of arch dams. Therefore, in the following part, we will firstly describe the standard 

and magnetic CSS-based methods as well as the BBBC and back propagation neural 

networks (BP); then the Quick Hybrid CSS (QHCSS) is introduced by combining these 

methods. 
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4.1 The standard charged search system 

The CSS [9] is a population based search approach which is based on principles from 

physics and mechanics. The pseudo-code for the CSS algorithm can be summarized as 

follows [17]: 

Step 1: Initialization. The initial positions of CPs are determined randomly in the search 

space and the initial velocities of CPs are assumed to be zero. The values of the fitness 

function for the CPs are determined and the CPs are sorted in an increasing order. A number 

of the first CPs and their related values of the fitness function are saved in a memory, so 

called Charged Memory (CM).  

Step 2: Determination of the forces on CPs. The force vector is calculated for jth CP as:  

 

1 2 1 23 2
,

1 2

1,2,...,

( ) 1, 0

0, 1

i i
j ij ij ij i j ij

i i j ij

ij

j N
q q

r i i ar p i i r a
a r

i i r a



 

         
 
 

   

F X X  (20) 

 

where 
jF is the resultant force acting on the jth CP; iX and 

jX are the position vectors of 

the ith and jth CPs, respectively, Here a  is the radius of the charged sphere and N is the 

number of CPs. 
ijp is the probability of moving each CP towards the others and 

ijr is the 

separation distance between two CPs. 
ijar indicates the kind of force. The magnitude of 

charge for each CP (qi) is defined considering the quality of its solution as: 

 

( )
,        1,2, ,i

fit i fitworst
q i N

fitbest fitworst


  


 (21) 

 

where fitbest and fitworst are the best and the worst fitness of all particles, respectively; 

( )fit i represents the fitness of the agent i; and N is the total number of CPs.  

Step 3: Solution construction. Each CP moves to its new position and the new velocity is 

calculated as: 

 

, 1 2 , ,
rand k rand k

j new j a j j v j old j old
      X F V X  

(22) 

, , ,j new j new j old
 V X X  

(23) 

 

where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 

of the previous velocity; and randj1 and randj2 are two random values uniformly distributed 

in the range (0,1).  

Step 4: Updating process. If a new CP exits from the allowable search space, a harmony 

search-based handling approach is used to correct its position. In addition, if some new CP 

vectors are better than the worst ones in the CM; these are replaced by the worst ones in the 

CM.  

Step 5: Termination criterion control. Steps 2-4 are repeated until a termination criterion 
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is satisfied, [9]. 

4.2 Magnetic charged system search algorithm 

The main structure of the algorithm is the same as the standard CSS, but by some 

modification in part of the algorithm where the forces are computed. Thus, for considering 

this force in addition to electric force, the CSS is extended to the MCSS algorithm by Kaveh 

et al. [8]. In the MCSS algorithm, all steps described for the CSS are valid, yet; however, the 

relationship for the force affected on each CP should be modified considering the magnetic 

fields: 

 

r E Bp  F F F  (24) 

 

where rp is the probability that an electrical force is a repelling force. Here, EF and BF

are the resultant electrical and magnetic forces, respectively. By using Eq. (Error! 

Reference source not found.), the resultant electrical force acting on the jth CP can be 

calculated, and the magnetic force ,B jF acting on the jth CP due to the magnetic field 

produced by the ith virtual wire (ith CP) can be expressed as: 

 

 
1 2

, 1 2 1 22
,

1, 0 ,

. . . . . , 0, 1 ,

1,2,..., ,

ij

i i
j j ij ji i j ij

iji i j

z z r R
I I

q r z z pm z z r R
rR

j N

   
  

         
  

BF X X  (25) 

 

where R is the radius of the virtual wires, Ii is the average electric current in each wire, and 

jipm is the probability of the magnetic influence (attracting or repelling) of the ith wire (CP) 

on the jth CP and defined similar to the standard CSS. The average electric current in each 

wire Ii can be expressed as: 

 

, min,

,

max, min,

( ) '
,

i k k

i k

k k

df df
I sign df
avg ik df df


 


 (26) 

, 1( ) ( ),i k k i k idf fit fit  X X  (27) 

 

where ,i kdf is the variation of the objective function of the ith CP in the kth iteration. 

 

4.3 Big bang-big crunch algorithm 

The Big Bang-Big Crunch algorithm proposed by Erol and Eksin [11] which is based on the 

concept of the center of mass. Here, the term mass refers to the inverse of the fitness 

function value. The point representing the center of mass that is denoted by cX  is calculated 

according to the formula: 
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1
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1

( )

1
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N

ii

c
N

i

fit i

fit i


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




X

X  (28) 

 

where iX is a point or candidate solution; N is the population size of the algorithm. When 

the Big Crunch phase is completed, the Big Bang phase is carried out to produce new 

candidates for the next iteration. These new candidates are produced using a normal 

distribution around the center of mass of the previous iteration. The standard deviation of 

this normal distribution decreases as the optimization process proceeds: 

 

1 max min
,

( )
1,2,...,

1
i new c

rand
i n

k

 
  



X X
X X  (29) 

 

where cX stands for center of mass, rand is a normal random number, 1  is a parameter 

limiting the size of the search space and k is the iteration step.  

 

4.4 Hybrid MCSS and BBBC algorithm 

In this new hybrid algorithm, the center of mass from the BBBC is added to the MCSS 

algorithm. In the other words, the new location of CPs is obtained as:  

 

oldjcjoldjvjjajnewj randkrandkrand ,3,21, XXVFX   (30) 

 

in which randj3 is a random value from [-1, +1]. In this hybrid algorithm, the positive 

advantages of the BBBC algorithm is added to the MCSS. In the other words, the new 

position of agents in the MCSS is obtained by using the forces generated by the other ones 

and this will guarantee a good exploration for the algorithm. However, applying the center 

of mass in addition to the above forces will enhance the exploitation ability of the algorithm. 

As a result, these two concepts will improve the performance of the algorithm without 

increasing the complexity of the method or required time for computations. 

 

4.5 BP neural networks 

The ANN is an engineering concept of knowledge in the field of artificial intelligence 

designed by adopting the human nervous system. One of the ANN algorithms called BPNN 

is a supervised learning method. It was first described by Paul Werbos in 1974 [18], and 

further developed by Rumelhart et al. in 1986 [19]. In general, the BPNN works by 

forwarding the output layer to the input layer in changing the weights. The layer in BPNN 

consists of three parts, namely input layer, hidden layer and output layer, Fig. 4. The basic 

backpropagation procedure for training the network is embodied in the following steps: 

Step 1. Apply an input vector to the network and calculate the corresponding output 

values.  

Step 2. Compare the actual outputs with the correct outputs and determine a measure of 

the error.  
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Step 3. Determine in which direction (+ or -) to change each weight in order to reduce the 

error.  

Step 4. Determine the amount by which to change each weight.  

Step 5. Apply the corrections to the weights.  

Step 6. Repeat steps (1) through (5) with all the training vectors until the error for all 

vectors in the training set is reduced to an acceptable value. 

 

 
Figure 4. A typical structure of BPNN architecture 

 

4.6 The proposed methodology 

The Quick Hybrid CSS algorithm (QHCSS) is implemented as follows: 

1. Initialize a number of random design of arch dams based on their geometric parameters 

and consider them as initial CPs. 

2. Calculate principal stresses of each design (CP) using exact finite element analysis. 

3. Calculate the maximum value of Willam-Warnke failure criterion among a time history 

results (called here MFC) for each dam. 

4. Consider the geometric parameters of generated dams as the inputs and their 

corresponding MFC as the targets of BPNN. 

5. Train BPNN using MATLAB. 

6. Define the CM. 

7. Determine both the electric and magnetic forces on CPs.  

8. Perform solution construction. 

9. Do position updating process. 

10. Employ the trained BPNN for predicting the MFC of new CPs. 

11. Evaluate the objective and constraint function by BPNN method. 

12. Update CM. 

13. Control termination criterion, if satisfied, stop otherwise go to the step (7).  
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5. NUMERICAL INVESTIGATION 
 

5.1 Modeling and Softwares 

To perform the optimization, the QHCSS algorithm is coded in MATLAB software; 

modeling and analyzing of the arch dam are performed using a combination of parallel 

working MATLAB and Ansys Parametric Design Language (APDL) codes. Reservoir is 

supposed to be full and the dam-reservoir interaction subjected to seismic loading is taken to 

account in this example. Since selection of any design earthquake will not affect the 

optimization process of the proposed methodology, the N–S record of 1940 El Centro 

earthquake is selected to apply to the arch dam-reservoir system in the upstream–

downstream direction [20] as shown in Fig. 5. In order to construct the dam geometry, six 

controlling levels are considered so the dam can be modeled using twenty shape design 

variables:  

 

c1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6{ , , t , , , , , , , , , , , , , , , , , }c c c c c u u u u u u d d d d d dt t t t t r r r r r r r r r r r r X  (31) 

 

In optimization process, we need the lower and upper bounds of design variables; these 

can be obtained using empirical design approaches, as [21]: 

 

0 0.3   0.5 1    

(6) 

1 3 10cm t m   1 104 135um r m   1 104   135dm r m   

2 5 14cm t m   2 91 118um r m   2 91   118dm r m   

37 19cm t m   378 101um r m   3 78   101dm r m   

49 23cm t m   4 65 85um r m   4 65   85dm r m   

511 26cm t m   5 52 68um r m   5 52   68dm r m   

612 31cm t m   5 39 51um r m   6 39   51dm r m   

 

 

 
Figure 5. N–S record of 1940 El Centro earthquake 
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5.2 Neural network training and testing 

For train and test the neural networks, inputs and outputs are the design variables of the arch 

dams and their corresponding MFC, respectively. Here, 300 training pairs are randomly 

generated and 210 and 90 samples are used for training and testing the network, 

respectively. Using the mentioned data BP neural network is trained. The time of training is 

37 sec. The number of hidden layer neurons is set to 10. It should be noted that the number 

of BP neurons is determined by trial and error. In this case, the number of BP neurons is 

changed and the testing errors are monitored. The best results are observed in the case of 10 

hidden layer neurons. The size of BP networks is 20-10-1. Figs. 6 and 7 show that the best 

performance of training and regression were 0.0038 and 0.9979, respectively. According to 

the results, the network has appropriate generalization and can be employed in the 

optimization process. 

 

 
Figure 6. Plot result of BPNN performance 

 

 
Figure 7. Plot result of BPNN regression 
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5.3 Results and discussion 

The standard CSS, MCSS, and QHCSS are utilized in this paper to find optimum designs of 

dam structure. For the example presented in this paper, the number of agents is set to 50 and 

the number of iterations is limited to 200 for the all utilized algorithms. The other 

parameters for the new algorithm are as follows: 2,ak   2,vk   1   and 0.75tk  . 

Optimum solutions obtained by the various methods are provided in Table 2. This table 

proves that the QHCSS can find the optimum design of the dam very quick compared to the 

CSS and MCSS. Also, comparing the results show that this method can find better results 

than the other algorithms. The reason is on apply the center of mass concept in improving 

the performance of the algorithm. 

 
Table 2: Optimum design of the arch dam obtained by different methods 

 Kaveh et al. [22] Present work 

Variable PSO CSS CSS-PSO CSS-FE CSS-BP MCSS-FE MCSS-BP QHCSS 

( )m m  0.1997 0.2183 0.2978 0.284 0.279 0.131 0.233 0.200 

( )m m  0.9888 0.9744 0.9983 0.829 0.823 0.538 0.522 0.516 

1( )tc m  6.8690 6.2301 6.0086 7.114 7.373 5.507 5.0934 4.851 

2 ( )tc m  14.2055 15.0000 13.1002 7.696 7.666 11.085 10.069 8.973 

3( )tc m  17.5240 17.8633 15.2319 11.491 11.286 13.625 11.217 11.971 

4 ( )tc m  21.7109 20.5649 24.6122 17.701 16.963 15.293 16.776 16.298 

5( )tc m  23.5017 25.7853 20.0053 18.259 18.239 14.692 16.673 15.883 

6 ( )tc m  28.6766 26.9561 25.0028 31.109 31.157 14.630 18.331 16.891 

1( )ru m  133.9955 129.1776 133.4167 127.759 126.71 108.162 112.302 110.637 

2 ( )ru m  92.5018 109.5474 104.8836 98.522 98.919 93.785 94.273 93.582 

3( )ru m  99.9468 82.1169 87.4033 85.599 85.568 80.091 87.958 80.408 

4 ( )ru m  74.6562 70.8406 78.5695 82.919 83.064 68.396 68.074 67.689 

5( )ru m  50.6424 59.9997 53.6063 65.034 64.112 54.121 56.983 55.084 

6 ( )ru m  42.9266 40.3869 39.8787 45.490 44.872 40.291 41.563 41.713 

1( )rd m  112.3219 117.8332 101.8954 126.066 124.905 107.912 111.761 109.716 

2 ( )rd m  85.0033 85.5730 85.6888 97.223 96.5153 92.678 93.7835 92.719 

3( )rd m  70.6935 73.1176 70.2540 82.601 82.4507 80.3580 88.461 79.562 

4 ( )rd m  65.0838 64.2909 60.9596 70.348 69.8220 66.7040 67.907 66.340 

5( )rd m  50.5577 54.0687 52.1588 59.230 59.12868 53.9090 56.623 54.417 

6 ( )rd m  39.4978 35.5311 38.1512 40.587 40.17098 40.1450 40.679 39.994 

Concrete 

volume 

(103 m3) 

3.49 3.47 3.36 2.49 2.46 2.34 2.32 2.24 

Total 

elapsed 

time (min) 

--- --- --- 25960 652 26005 662 665 
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Also, Table 2 reveals that the solutions found in present work are much more better than 

that of results obtained by Kaveh et al. [22]. The difference comes from the superiority of 

the presented approach and the way of modeling the dam-reservoirs interaction. Kaveh et al. 

[21] used generalized Westergaard method for dam-reservoir interaction, which is an 

approximate method and overestimates the resulted stresses in dam body while in the 

present study exact finite element approach is used for this purpose.  

It is observed that the overall time of optimization by neural networks including the data 

generation, network training and optimization task is significantly (0.025 times) less than 

that of optimization via full finite element analysis. Table 3 represents the MFC of optimum 

dams obtained by various methods mentioned in Table 2. The errors of approximate MFC of 

optimum designs predicted by BP network are compared to their corresponding accurate 

values obtained by exact analysis as shown in Table 4. It can be observed that the accuracy 

of approximate MFC obtained by BP is reasonably high. The present study demonstrates 

that the QHCSS creates a reliable and robust tool for arch-dam optimization for seismic 

loading. 

 
Table 3: MFC of optimum dams obtained by different methods 

 
CSS 

BBBC 
MCSS QHCSS 

FE BP FE BP  

MFC -0.0669 -0.0644 -0.1100 -0.1118 -0.1393 

 
Table 4: Error percentage of approximate MFC of optimum dams  

Errors (%) CSS-BP 

BBBC 
MCSS-BP QHCSS 

Maximum errors    

Mean errors 0.0373 0.0163 0.0190 

 

 

6. CONCLUSION  
 

An efficient algorithm for shape optimization of double curvature arch dams is proposed in 

this paper. For this purpose, a finite element model of the arch dam-water system is 

presented and its performance is verified compared with the results reported in literature. 

Arch dam geometry is defined employing two polynomial for the central vertical section and 

two parabolas for the horizontal section. Concrete volume of dam body is considered as the 

objective function. By dividing the dam into five segments along the height, twenty design 

variables are considered as design parameters. In order to optimize the arch dam, a 

combination of the powerful optimization algorithms and neural networks are utilized. For 

this purpose, the magnetic CSS combined with BBBC and BBNN, so-called QHCSS, is 

presented. Maximum value of Willam Warnke failure criterion (MFC) is utilized as 

behavioral constraint to enforce resultant principal stresses to stay under a certain limit. 

Besides, some geometric and stability constraints are included. In order to reduce the 

computational cost of the optimization process, MFC of the arch dams are evaluated using 

properly trained back propagation (BP) neural network instead of their exact finite element 
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analysis. The proposed algorithms are applied to optimum design of Morrow Point dam as a 

well-known and real-world double curvature arch dam. In this example, the reservoir is 

assumed full and hydrodynamic effects of dam-reservoir interaction subjected to seismic 

loading are taken to account. Numerical results indicate that the approximate analysis-based 

optimization can significantly reduce the total computing time of FEA-based optimization 

while the errors are very small. Besides, the exact finite element method is more accurate 

and reliable approach for numerical modeling of the dam-reservoir interaction comparing 

the approximate added mass approach. The results also reveal that the QHCSS yields the 

best optimal solutions among other used methods. 
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