Search published articles

Showing 8 results for Taguchi

A. Bahrami, M. R. Hosseini, M. Pazouki,
Volume 6, Issue 4 (12-2009)


point of view. In this study, a shaking-table was used for concentrating a manganese ore sample from the Ghasem Abad

area in Kerman, Iran. Experiments were designed by using L

The influence of each variable and their interactions on the operation of the device was studied. The variables under

investigation were: table slope, table frequency, water flowrate, feed rate, and particle size. The manganese

concentrate grade, recovery, and separation efficiency were used as response variables. It was shown that water

flowrate, table slope, feed rate, and particle size are the significant variable on concentrate grade while, all the

variables influence manganese recovery. Also, water flowrate, table slope, and table frequency have an important

effect on manganese separation efficiency. Finally, three mathematical models were presented to predict the values of

each response variables.

Among all gravity concentration methods, the shaking-table is the most effective one from the metallurgical8 Taguchi design with five variables, each in two levels.

M. Aazami, H. Yoozbashizadeh, A. K. Darban, M. Abdolahi,
Volume 10, Issue 4 (12-2013)

The orthogonal array design has been used to determine the optimum conditions for gold recovery from Zarshuran refractory gold sulfide ore (Iran) by direct cyanidation and roasting-cyanidation. The Taguchi method was used as the experimental design to determine the optimum conditions of dissolution behavior of gold with cyanidation and roasting-cyanidation from Zarshuran refractory gold ore . The experimental conditions were studied in the range of 10–12 for pH, 20-40 for time(h), 400-1200 for cyanide content (g/ton) and 30 -40 for percent solid(%). Orthogonal array (OA) L9 (34) consisting of four parameters each with three levels, was chosen. From this study for direct cyanidation the total optimum gold dissolution (30.11%) obtained at pH (10), Time (40 h), Cyanide content (800g/ton) and Percent solid (30%). Also for roasting- cyanidation the total optimum gold dissolution (34.96%) obtained at pH (12), Time (40 h), Cyanide content (1200g/ton) and Percent solid (35%).
B.m. Viswanatha, M. Prasanna Kumar, S. Basavarajappa, T.s. Kiran,
Volume 14, Issue 2 (6-2017)

The effects of applied load, sliding speed and sliding distance on the dry sliding wear behavior of aged Al-SiCp-Gr composites were investigated. The specimen were fabricated by stir-casting technique. The pin-on-disc wear testing machine was used to investigate the wear rate by design of experiments based on L27 using Taguchi technique. Sliding distance was the most important variable that influenced the wear rate followed by sliding speed and applied load. The worn out surfaces were analyzed by SEM and EDS to study the subsurface mechanism of wear. The addition of reinforcements showed improved tribological behavior of the composite than base alloy.

M. Arockia Jaswin, D.m. Mohan Lal,
Volume 15, Issue 1 (3-2018)

The behaviour of the cryogenically treated En52 martensitic valve steel has been experimentally analyzed in this paper. Material samples are subjected to deep cryogenic treatment after completing the regular heat treatment. The critical properties of the valve steel like wear resistance, hardness, tensile strength and impact strength are evaluated for the cryo treated En52 valve steel samples as per the ASTM standards. The microstructural changes and the mechanism behind the enhancement of the properties are examined and reported. The precipitation of fine carbides, transformation of retained austenite and refinement of carbides were the reasons behind the improvement of the mechanical properties. Deep cryogenic treatment process parameters are optimized for better wear resistance, hardness and tensile strength using grey Taguchi technique. Deep cryogenic treatment process greatly influences the wear resistance, a maximum enhancement of 54% is observed

P.k. Jayashree, Sh. Raviraj, S.s. Sharma, G. Shankar,
Volume 15, Issue 2 (6-2018)

CoHErrelation between weldability and improvement in properties is a key issue in materials science research. The objective of this work is to optimize the process parameters viz., aging temperature, aging time, solutionizing time, to enhance the hardness of Al6061 alloy. Hence, the present paper deals with hardness study of Tungsten Inert Gas welded 6061 aluminium alloy after age hardening under three different aging temperatures, aging time and solutionizing time using Taguchi’s L9 Orthogonal array. Finally, a second order model has been generated for hardness using Response Surface Methodology with 20 runs for full design. The predicted and experimental results are in good agreement.

M. R. Ghaani, P. Marashi,
Volume 15, Issue 3 (9-2018)

Na super ionic conductive (NASICON) materials are ceramics with three-dimensional scaffolds. In this study, Li1.4Al0.4Ti1.6(PO4)3 with NASICON structure was synthesized by Pechini method. As a result, a sample having a total conduction of 1.18×10-3 S cm-1 was attained. In addition, various parameters were studied to obtain high value of conductivity, by optimizing the process. The optimization was made using L16 Taguchi based orthogonal array, followed by ANOM, ANOVA and stepwise regression. As a result, the optimum synthesis parameters can be obtained, while pH of the solution was adjusted to 7. The ratio between the concentration of citric acid to metal ions and ethylene glycol concentration stuck to 1 and 2.5, respectively. The best heat treatment can be carried out with a combination of pyrolysis at 600 ºC and sintering at 1000 ºC. 
M. Abbasalizadeh, R. Hasanzadeh, Z. Mohamadian, T. Azdast, M. Rostami,
Volume 15, Issue 4 (12-2018)

Shrinkage is one of the most important defects of injection molded plastic parts. Injection molding processing parameters have a significant effect on shrinkage of the produced parts. In the present study, the effect of different injection parameters on volumetric shrinkage of two polymers (high-density polyethylene (HDPE) semi-crystalline thermoplastics and polycarbonate (PC) as a representative of amorphous thermoplastics) was studied. Samples under different processing conditions according to a L27 orthogonal array of Taguchi experimental design approach were injected. Effect of material crystallinity on the shrinkage of injected samples was investigated. Obtained results revealed that semi-crystalline thermoplastics have larger shrinkage values in comparison with amorphous thermoplastics. Shrinkages of injected samples were also studied along and across the flow directions. Results showed that the flow path can dramatically affect the shrinkage of semi-crystalline thermoplastics. However for amorphous thermoplastics, results showed an independency of obtained shrinkage to flow direction. Analysis of variance (ANOVA) results illustrated that cooling time was the most effective parameter on shrinkage for both PE and PC injected samples; followed by injection temperature as the second important parameter. The optimum conditions to minimize shrinkage of injection molded samples are also achieved using signal to noise ratio (S/N) analysis.
R. Hasanzadeh, S. Fathi, T. Azdast, M. Rostami,
Volume 17, Issue 2 (6-2020)

Heat transfer in foams consists of conduction through solid and gaseous phases, convection within the cells as well as radiation through the whole medium. Radiation thermal conduction affects the overall thermal conductivity by 40% in a high porosity. Therefore, the investigation of that term seems to be necessary. Radiation thermal conduction depends on the extinction coefficient which its determination is experimentally complex. In this study, this coefficient is theoretically estimated using Glicksman model for polyolefin foams and is verified in comparison with the experimental data. Extinction coefficient which plays an effective role in the radiation thermal conduction depends on the morphological properties including foam and solid densities, cell and strut diameters. The results demonstrate that the radiation thermal conduction decreases by reducing cell size and increasing foam density and strut diameter. An L25 orthogonal array of Taguchi approach is used for optimization of radiation thermal conduction respect to foam density, cell and strut diameters as variable parameters. The analysis of variance results illuminate that foam density and cell diameter with 58 and 32% contribution are the most effective parameters on the radiation thermal conduction, respectively. At optimum conditions according to the prediction tool of Taguchi approach, the radiation thermal conduction significantly decreases to 1.0908 mW/mK.

Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb