Search published articles

Showing 3 results for Subsurface

Y. Fouad,
Volume 7, Issue 4 (10-2010)

Abstract: Rotating bending fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in laboratory air at ambient temperature. Fatigue strength and characteristic was evaluated and fracture mechanism was discussed on the basis fracture surface analysis. Electrical polishing (EP) as well as deep rolling (ball burnishing (BB)) U-notched specimens were performed on two groups of samples, to evaluate optimum conditions for fatigue life. The microstructure and tensile properties of roll cast (RC) Mg- 3% Al- 1% Zn (AZ31) was investigated. The fatigue strength of 107 cycles around 100 MPa for deep rolling while it was around 40 MPa for Electrical polishing. It was very important to understand the effect of (ball burnishing (BB)) conditions on the hardness of the surface through to the core. The two procedures improved the fatigue performance, but better improve in results were found in ball burnishing. The growth of small cracks initiated at the surface coincided with the FCP characteristic after allowing for crack closure for large cracks, but the operative fracture mechanisms were different between small and large cracks. At the subsurface crack initiation site, smooth facets were always present regardless of applied stress level.
S. M. M. Shafiei, M. Divandari, S. M. A. Boutorabi, Naghizadeh,
Volume 12, Issue 2 (6-2015)

In this work, TiN/TiCN & PN/TiCN multilayer films were deposited by plasma- assisted chemical vapour deposition (PACVD). Plasma nitriding (PN) and TiN intermediate layer prior to coating leads to appropriate hardness gradient and it can greatly improve the mechanical properties of the coating. The composition, crystalline structure and phase of the films were investigated by X-ray diffraction. Atomic force microscopy and scanning electron microscopy were employed to observe the morphology and structure of the films. The TiCN layer exhibited a columnar structure. The adhesion force between the film and the tool steel substrate was 30.8 MPa for TiN/TiCN and 25.4 MPa for PN/TiCN film determined by pull off tests. The hardness of TiN/TiCN film was 12.75 GPa while it was 5.4 GPa for PN/TiCN film, respectively. The improvement of the adhesion in TiN/TiCN was attributed to a less gradient hardness configuration. In addition, the mean friction coefficients of the films were about 0.2 for TiN/TiCN and 0.3 for PN/TiCN film determined by nanoindentation tests.
B.m. Viswanatha, M. Prasanna Kumar, S. Basavarajappa, T.s. Kiran,
Volume 14, Issue 2 (6-2017)

The effects of applied load, sliding speed and sliding distance on the dry sliding wear behavior of aged Al-SiCp-Gr composites were investigated. The specimen were fabricated by stir-casting technique. The pin-on-disc wear testing machine was used to investigate the wear rate by design of experiments based on L27 using Taguchi technique. Sliding distance was the most important variable that influenced the wear rate followed by sliding speed and applied load. The worn out surfaces were analyzed by SEM and EDS to study the subsurface mechanism of wear. The addition of reinforcements showed improved tribological behavior of the composite than base alloy.

Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb