Search published articles


Showing 2 results for PAYDAR M.H

PAYDAR M.H., Fadaei R., Shariat M.h.,
Volume 2, Issue 2 (Jan 2005)
Abstract

Copper coated SiC powders having three different amounts of copper, in the range of 20-60 wt%, were prepared via electroless coating process. The produced composite powders were uniaxially cold compressed and sintered at different temperatures and times under protective atmosphere. It was found that composite Cu/SiC powders and a relatively dense copper matrix composite with a uniform distribution of SiC reinforcing particles imbedded in copper matrix can be fabricated via electroless coating method followed by conventional cold pressing and sintering process. The results also show that SiC particles have a poor wettability with copper and so liquid phase sintering of the Cu/SiC composite powders did not enhance densification of the samples. Regarding this fact, optimum sintering temperatures, which depends on copper content, was determined to be in the range of 1050-1080?C.
Estili M., PAYDAR M.H., Bahrololoom M.e.,
Volume 2, Issue 3 (Apr 2005)
Abstract

Dispersion and rheological behaviors of ionically stabilized aqueous alpha alumina suspensions were investigated in various pH values (3, 11) and solid volume fractions (4, 7, 10, 15) Vol% using sedimentation experiment as well as viscosity measurement. Interface separating porous-packed sediment from a relatively clear supernatant at pH 11 was measured over 20 hours with the aim of obtaining linearity range, initial settling velocity, final sediment height and suspension sensitivity factor, whilst it failed to be observed in the case of pH 3 for its turbid supernatant. Thus, the final sediment level instead of interface location was taken into consideration. For all solids loading, final sediment level in the case of pH 3 was smaller than those in pH 11. The interface was observed to be moving downward in a linear fashion, with the steady drive toward an equilibrium state, which was substantiated to be pH and solid loading dependent. As ? increased, linearity time changed in an ascending order. pH 11 suspensions showed good agreement with the well-known Richardson-Zaki equation and displayed dramatic variations in initial settling velocity, whilst it was not the case for pH 3 as understood generally by turbidity observations. In addition, pH and ? appeared to be more effective in giving stability to the suspending systems. On the other hand, rheological behaviors of these suspensions were taken into consideration for better indication of suspension stabilization degree in which suspension yield stress derived using viscosity values was focused. The results showed that ?y at pH 3 is much lower than that of at pH 11. This is a further indication of better dispersion at pH 3. It was also found that for all ? values, pH 3 suspensions were more stable than the flocculated pH 11 ones.

Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb