Search published articles

Showing 11 results for Refractory

Moore R.e., Karakus M.,
Volume 2, Issue 4 (12-2005)

In situ refractories are defined as brick or unshaped products, which react internally or with furnace atmospheres and/or slag components so as to be enhanced in their performance. Examples of such products are discussed with emphasis on those that are currently employed and are being developed for the melting of iron and steel. Some strategies for the development of future in situ products are outlined.
Rigaud M., Palco S., Paransky E.,
Volume 3, Issue 1 (6-2006)

Wear of various basic refractory materials to substitute to currently used magnesia chrome bricks has been studied, measuring matte and slag penetration and dissolution, through different cup and rotary slag tests. High magnesia with and without impregnation, magnesia graphite, magnesia-alumina spinel with and without impregnation, olivine-magnesia and olivine magnesia- graphite bricks, as well as magnesia-graphite and olivine magnesia castables, have been tested. It has been shown that carbon impregnation and graphite introduction into basic refractories are feasible ways to enhance their corrosion-dissolution and penetration resistance against fayalite as well as calcium-ferrite slags. Olivine-based refractories (castables or bricks) may be considered as viable candidates to use in copper-making furnaces. At this point, evaluation of the thermo-mechanical properties of this new class of materials is still missing.
Oprea G.,
Volume 3, Issue 3 (12-2006)

Although the flash smelting technologies use different furnace designs, the refractory linings are exposed to very similar aggressive environments and, as a result, the corrosion analysis results on one type of furnace could be generally applied to other furnaces of similar high temperature processes. Particularities regarding the different chemistries of the pyrometallurgical process and operating parameters of these furnaces could also bring particular aspects to be considered when analyzing the refractory ware and final failure in use. This paper presents a review of the existent experimental. data of corrosion analyses on refractory linings used in two particular flash furnaces for zinc-lead and respectively nickel-copper smelting. Although various modern water cooling systems are generally used to protect the refractory wall linings against corrosion by molten slag and matte, the performance of the refractory roof lining, usually used without water cooling, represents a permanent concern and the object of research studies to extend their life in service. The failure mechanisms analysed in this study are based on postmortem analyses and laboratory corrosion experiments with magnesite-chrome bricks of different chemical and mineralogical compositions. The gaseous atmosphere, usually rich in SO2 and/or CO and various metal fumes, produces irreversible microstructural changes which could shorten the life in service of the refractory lining. The experimental data proved that thermal cycling in SO2/SO3 atmospheres could bring more damage than a continuous use at relatively constant temperature, due to the magnesium and calcium sulphate formation. The laboratory experiments and postmortem analyses showed that that metal fumes at various partial pressure of oxygen would condense as oxides and react inside the pores and at the grain boundaries, contributing to the continuous deterioration of the ceramic matrix of the refractory brick lining. The mechanisms of corrosion, discussed based on laboratory experiments, were confirmed by the postmortem analyses on brick samples used in the industrial flash smelting furnaces.
K. Ghanbari Ahari,
Volume 5, Issue 1 (3-2008)

Abstract: Thermodynamic computational packages MTDATA and FactSage have been used to carry out calculations on the variation with temperature of the phases precipitated on cooling in both oxidising and reducing conditions of a typical ladle slag composition, in the temperature range 1700 - 900°C. The current coverage of the databases associated with the computational packages is discussed in relation to their application to slag - refractory interaction and the validity of the results is compared with some relevant experimental data and phase equilibrium studies
A. m. Hadian, B. Nazari,
Volume 7, Issue 3 (8-2010)


Dolomite refractories have a good production potential in Iran due to the existence of high-quality dolomite ore in many regions of the country, particularly in Isfahan and Hamedan. The basic problem associated with the production and use of this type of refractories is inherent tendency to hydration of calcined dolomite. One of the methods to overcome this problem is to increase the amount of magnesia in doloma. This study focuses on the use of Iranian dolomite to produce magnesia –doloma (mag-dol) refractory with high resistance to hydration and corrosion. It was found that addition of 20wt% magnesite to dolomite would result in capsulating of CaO by MgO that protects doloma from further hydration
M. Farzalipour Tabriz, M. Ghassemi Kakroudi*,
Volume 7, Issue 4 (10-2010)

Abstract: Cordierite-Mullite based kiln furnitures are widely used in fast-firing of ceramic products because of their low thermal expansion which confer them a very good ability to thermal shock resistance. Difference in CTE of constituent phase can develop damage during thermal cycling due to internal stresses. Increase in industrial competitiveness leads to the development of new means for extending refractory life and increasing reliability of industrial tools so investigations regarding the structuralmechanical behaviour of refractory systems are becoming essential. In this paper, Thermo-mechanical design of commercial Cordierite-Mullite based kiln furniture was investigated by using finite element method (FEM) and possible solutions for improvement of working life have been considered. The results indicated that the change of the kiln furniture geometry can decrease the maximum thermomechanical stress in study conditions which can prolong the refractory service life. Obtained results indicate the existence of an optimal thickness for the section under maximum thermo-mechanical stress. Increasing filet radius of ring region from 3 to 9 mm decreases thermo-mechanical stress value from 113 to 93 MPa.
N. Hamedani Golshan,, H. Sarpoolaky, A. R. Souri,
Volume 8, Issue 1 (3-2011)

Abstract: Efforts have been carried out in order to use microsilica to develop a forsterite bond rather than other types of binders in the basic refractory castables. According to the higher drying rate and sinterability of colloidal silica, it has been proposed in the recent years. In the present work, effects of replacement of microsilica by colloidal silica evolution of forsterite bond have been studied in magnesia based refractory castables. In this way, Physical properties of prepared samples with different amount of colloidal silica versus temperature were investigated. In addition, phase variation and microstructural evolution of sintered specimens at 1000, 1200 and 1400 °C were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. Results showed that, due to Reaction of magnesia with microsilica and colloidal silica, magnesium hydrate and magnesium silicate hydrate formed in the dried samples strengthening the texture of the samples while forsterite formed from about 1000 °C and gradually increased with temperature rise. Also, better forsterite formation would be appeared by increasing the colloidal silica content. Further investigation carried out on the type of silica addition on properties of the castable refractory samples. It was found that the presence of micro silica and colloidal silica simultaneously (MS3C3 sample) at 1400 °C, caused modifying mechanical strength in compare with sample with only micro silica (MS sample).
H. Yaghoubi, H. Sarpoolaky, F. Golestanifard, A. Souri,
Volume 9, Issue 2 (6-2012)

Colloidal silica bonded refractory castables have been developed recently. It was found that colloidal silica is one of the best binders can substitute other binders such as cement in No Cement Castable (NCC) and Ultra Low Cement Castable (ULCC) refractories. Also composition of colloidal silica with appropriate additives resulted in a gel form which makes the initial strength. Moreover, the nano size silica particles are extremely reactive in high alumina castables and may encourage the mullite formation in the microstructure. In the current study, four castables were prepared. The sample containing 6wt % microsilica was a reference, then microsilica was replaced by different amount of colloidal silica (2.5, 5, 7.5 wt %). Silica and water content was kept constant. It’s concluded that the castables containing the optimum amount of silica sol shows remarkable increase in both castable fluidity and mechanical strength (CCS and MOR) in dried and sintered state. It was also found that nanosilica particles increase the rate of needle-shaped mullite formation during sintering at 1400°C. According to FTIR results, the addition of Calcium Aluminate Cement (CAC) to the silica sol may be responsible for the increment of siloxane bridges (Si-O-Si).
M. Aazami, H. Yoozbashizadeh, A. K. Darban, M. Abdolahi,
Volume 10, Issue 4 (12-2013)

The orthogonal array design has been used to determine the optimum conditions for gold recovery from Zarshuran refractory gold sulfide ore (Iran) by direct cyanidation and roasting-cyanidation. The Taguchi method was used as the experimental design to determine the optimum conditions of dissolution behavior of gold with cyanidation and roasting-cyanidation from Zarshuran refractory gold ore . The experimental conditions were studied in the range of 10–12 for pH, 20-40 for time(h), 400-1200 for cyanide content (g/ton) and 30 -40 for percent solid(%). Orthogonal array (OA) L9 (34) consisting of four parameters each with three levels, was chosen. From this study for direct cyanidation the total optimum gold dissolution (30.11%) obtained at pH (10), Time (40 h), Cyanide content (800g/ton) and Percent solid (30%). Also for roasting- cyanidation the total optimum gold dissolution (34.96%) obtained at pH (12), Time (40 h), Cyanide content (1200g/ton) and Percent solid (35%).
E. Mohammadi, M. Pourabdoli,
Volume 16, Issue 2 (6-2019)

The effect of mechanical activation on the kinetics of ammoniacal thiosulfate leaching of a refractory oxide gold ore containing 2.8 ppm Au was investigated. The gold extraction of 99.81% was achieved by 16 h leaching of a sample mechanically activated for 60 minutes. The gold extraction observed for a similar reference sample without mechanical activation was only 55%. Studies revealed that leaching progresses at two different rates depending on the leaching time (0-2 h and 2-16 h). It was observed that diffusion through an ash layer as a dominant mechanism controls the leaching of samples mechanically activated up to 45 minutes during total leaching time, while reaction control and liquid film diffusion are dominant mechanisms for leaching of a sample mechanically activated for 60 minutes during 0-2 h and 2-16 h, respectively. The extraction observed during the ash diffusion step depends significantly upon mechanical activation time.  Mechanical activation of 60 minutes results in high gold extraction in this step which when combined with subsequent chemical reaction gives close to 100% gold extraction in a 16 hour leach.  Mechanical activation for up to 45 minutes leads to a modest improvement in overall gold extraction compared with the reference test without mechanical activation

Gholam Hussein Borhani, Saeed Reza Bakhshi, Sadegh Soltani,
Volume 18, Issue 2 (6-2021)

In this study, Ta powder was produced from Ta scarp via chemical processes using Mg and Ca powders. At first, Tantalum scraps were converted to Tantalum oxide (Ta2O5) at 1100˚C in an oxygen atmosphere. Tantalum oxide was reduced to Tantalum powder with Mg in a vacuum environment at 950 to 1200˚C for 3 hours. The obtained Ta powders further were reacted with Ca at 950˚C for 5 hours in a vacuum atmosphere. The powders were analyzed through X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), as well as oxygen measurement. The results show that the average particles size of the produced Ta powders is about 58 nm with oxygen contents of 250 ppm.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb