Integration of Production Planning and Scheduling in Multi-Products Continuous Process Industries

Mohammad Ranjbar* & Mostafa Naghizadeh

* Mohammad Ranjbar, Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
Mostafa Naghizadeh, Department of Industrial Engineering, Faculty of Engineering, Payam Noor Tehran University

Keywords
Production planning and scheduling, Continuous process industries, Integration

ABSTRACT
One of the main elements of each supply chain is production. Production planning in multi-products process industries in which products are subjected to the complicated operational constraints is a very hard work because production of computed optimal volume should be compatible with operation scheduling constraints of production system. Thus, integration idea has been proposed for required decisions of these two problems. The main dilemma in integration is how to make relation between production planning problem with middle term time interval and production scheduling problem with short term time interval. In this paper, we formulate and integrate production planning and operation scheduling problems in continuous process industries with multi products and capability of saving partial products in short and long terms time intervals. In continue, a heuristics solution approach has been proposed and its performance has been evaluated using a practical case study.

© 2011 IUST Publication, IJIEPM. Vol. 22, No. 2, All Rights Reserved
یکپارچه‌سازی برنامه‌ریزی و زمانبندی تولید در صنایع فرآیندی چند محصولی با سیستم تولیدی پیوسته

محمود رنجبیر و مصطفی نقیزاده

چکیده:

یکی از آرای اصلی در زمینه تأمین بخش تولید است. برنامه‌ریزی تولید در صنایع فرآیندی چند محصولی که تولید محصولات در محیط محدود و محدودیت‌های عملیاتی و پیوسته قرار دارد، کار بسیار دشواری است. زیرا تولید به همراه مباحث شده باید با محدودیت‌های زمانبندی عملیات سیستم تولیدی سازگار باشد. از این رو ایجاد یکپارچه سازی مطرح تا تصمیم گیری های مربوط به این دو سیستم در کلار کمکم کرده است. سیستم‌های اصلی در یکپارچه سازی نحوه ایجاد ارتباط بین سیستم برنامه‌ریزی تولید با زمانی میان در سیستم زمانبندی تولید، بازه‌های زمانی کوتاه مدت ایجاد یکپارچه سازی برنامه‌ریزی تولید و زمانبندی عملیات تولیدی در صنایع فرآیندی پیوسته و چند محصولی با قابلیت دیجیتال مزرعتی محصولات میانی در زمانی کوتاه مدت و بند مدت خواهی برداخت از این کوتاه مدت، یک کوتاه مدت کوتاه فوری قرار دارد. شده و کارایی آن در یک مطالعه موردی و عملی مورد ارزیابی قرار گرفته است.

کلمات کلیدی:

برنامه‌ریزی و زمانبندی تولید، صنایع فرآیندی پیوسته، یکپارچه سازی

1. مقدمه

رشد و روز گردی صنایع دردهایی اقتصادی و رقابتی شدید در بازار سبب توجه به پیش‌بینی برنامه‌ریزی در سیستم‌های تولیدی مختلف شده است. در سیستم‌های اصلی، به‌طور پیوسته مراحل برنامه‌ریزی تولید در صنایع فرآیندی مانند صنایع گازی، صنایع پتروشیمی، صنایع معدنی، صنایع غذایی بهبودیافته به شدت مورد توجه قرار گرفته است. در این صورت، مطالعات برنامه‌ریزی تولید عموماً تولید، تهیه‌برتری و فروش محصول در بازارهای میان مدت یا بند مدت را پوشش می‌دهد. حالا که زمانبندی تولید به‌عنوان تولید فرآیندی و موثر در رفتار میان دوره‌ای و موانع جرمی میان دوره‌ای مختلف در بازارهای زمانی کوتاه مدت می‌پردازد. به دلیل ارتباط نزدیک

تاریخ وصول: 89/5/31
تاریخ تصویب: 89/12/21

*نویسنده مسئول مقاله: م наук دکتر محمد رنجبیر، دانشگاه فردیس مشهد
m_ranjbar@um.ac.ir

**بحث کننده مسئول مقاله: دانشکده مهندسی، گروه مهندسی مکانیک
ie.naghizadeh@gmail.com، صنایع
1- نونه صیفی، هرگز نمی‌تواند در مثال‌هایی بهترین جهت کاربردی جایگزین شود.
2- معمولاً، مدل‌های تصادفی بهترین جهت کاربردی برای مدل‌های تصادفی محسوب می‌شوند و یک مدل پیش‌یافته خوب به‌طور گسترده‌ای در مسائل مختلف به بهترین جهت کاربردی مدل‌های تصادفی استفاده می‌شود.

قسمت 2: مدل‌های تصادفی

1- برای کمک به کاربرد بهتر در مدل‌های تصادفی، بهترین جهت کاربردی برای مدل‌های تصادفی استفاده می‌شود که بهترین جهت کاربردی مدل‌های تصادفی استفاده می‌شود و یک مدل پیش‌یافته خوب به‌طور گسترده‌ای در مسائل مختلف به بهترین جهت کاربردی مدل‌های تصادفی استفاده می‌شود.

قسمت 3: مدل‌های تصادفی

1- برای کمک به کاربرد بهتر در مدل‌های تصادفی، بهترین جهت کاربردی برای مدل‌های تصادفی استفاده می‌شود که بهترین جهت کاربردی مدل‌های تصادفی استفاده می‌شود و یک مدل پیش‌یافته خوب به‌طور گسترده‌ای در مسائل مختلف به بهترین جهت کاربردی مدل‌های تصادفی استفاده می‌شود.
شکل ۱. مثال از شبکه‌های فرآیندی مورد بررسی
فهرست

1- فرضیه‌ها
الف) زمان و هزینه چاپی جایگزین مواد بین میانی‌ها صفر فرض
می‌شود.
ب) مانی را مقدار خواهند پیدا کرد.
ج) فضاهای عملیاتی مجزا نیست، به علت این که تریال‌ها می‌توانند خود هم در این مورد نتایج هم جوانی داشته باشند.

2- ایندکس استفاده برای پیکارچه‌سازی

این مورد استفاده در این مقاله طرحی مطرح است. بر اساس مدل‌های جایگزینی [۱]، در این روش، نیاز به مدل‌سازی هزینه برای محاسبه مقدار زمان و هزینه کاربرد مناسب برای حداقل هزینه کاری می‌باشد.

جدول ۱: مقدارهای مورد استفاده در پیکارچه‌سازی

<table>
<thead>
<tr>
<th>تولید</th>
<th>$SP = S_{p1}, S_{p2}, \ldots, S_{p30}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{p1}</td>
<td>S_{p2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مجموعه محصولات</th>
<th>مجموعه زمانی‌های یک دوره برنامه‌ریزی تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = {1, 2, \ldots, 30}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t \in T$</th>
<th>$s \in SP$</th>
<th>c_{s}</th>
<th>h_{s}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>تولید</th>
<th>Q_{s}^{t}</th>
<th>D_{s}^{t}</th>
<th>B_{s}^{t}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>مقدار نهایی محصول حیاتی در روز</th>
<th>P_{s}^{t}</th>
</tr>
</thead>
</table>

| $s \in SP$ | $t \in T$ | E_{s}^{t} |

| $t \in T$ | $s \in SP$ | G_{s}^{t} |

| مقدار مقدار تولید در روز | E_{s}^{t} |

| $t \in T$ | $s \in SP$ | G_{s}^{t} |

| مقدار کمک‌محصول حیاتی در روز |

| $s \in SP$ | $t \in T$ | E_{s}^{t} |

| $t \in T$ | $s \in SP$ | G_{s}^{t} |

| مقدار کمک‌محصول حیاتی در روز |

| $s \in SP$ | $t \in T$ | E_{s}^{t} |

| $t \in T$ | $s \in SP$ | G_{s}^{t} |

| مقدار کمک‌محصول حیاتی در روز |

| $s \in SP$ | $t \in T$ | E_{s}^{t} |

| $t \in T$ | $s \in SP$ | G_{s}^{t} |

| مقدار کمک‌محصول حیاتی در روز |
با استفاده از نامه‌های بالا می‌توان مساله برنامه‌ریزی تولید را بصورت زیر نمود:

\[
\begin{align*}
\min \quad & \sum_{t=0}^{n} \left(\sum_{s \in S} (h_s, E_s^t) + (c_s, G_s^t) \right) \\
G_s^t & = D_s^t - P_s^t - E_s^{t-1} \quad \forall s \in SP, t \in T \\
E_s^t & = \sum_{t \geq t} \left(E_s^t \right) \quad \forall s \in SP, t \in T \\
\sum_{s} (P_s^t + E_s^t) & \leq B \quad \forall t \in T \\
Q_s^t & = P_s^t + E_s^t \quad \forall s \in SP, t \in T \\
E_s^t & = 0 \quad \forall s \in SP, t = \text{end day} \\
E_s^t & \geq 0 \quad \forall s \in SP, t \in T \\
G_s^t & \geq 0 \quad \forall s \in SP, t \in T \\
0 & \leq P_s^t \leq D_s^t \quad \forall s \in SP, t \in T
\end{align*}
\]

مدل‌سازی مساله زمانبندی تولید

فلوداس و لین (8) با پیش‌بینی ایده‌ای های مختلف در خصوص زمانبندی سیستم‌ها، با تغییری که در آن‌ها از دو منبع مدل‌سازی می‌تواند جریان جدیدی به ابزارهای شرکت‌های ویژه نسبت به مدل‌های مثبتی برای کنترل و بهبود مصرف رویانی‌ها می‌شود. بنابراین چه در مدل‌سازی مساله زمانبندی تولید برای شرکت‌های خاص مورد استفاده قرار می‌گیرد.

در فرمول‌نویسی بیشتری باید زمانبندی تولید سیستم‌ها چگونه است. در اینجا، دو نکته اصلی مطرح می‌شود. یک نکте
راکن‌های مزایای میان‌ای ماده‌های حالت s مقدار کل مجموع تولیدی توسط کار i

$$\mathcal{Q}_i^d = \text{مقدار کل مجموع تولیدی توسط کار}$$

حال با استفاده از نمادهای فوق، می‌توان مساله زمان‌بندی تولید را بصورت زیر فرمول‌بندی کرد.

$$\text{MIN} \sum \sum C_{ij'} x_{ij'} + \sum \sum \sigma_{SS_i} \cdot w_{SS_i}$$

$$+ C_{ij'} - l_{ij'} \geq \tau_{ij'} + (1 - x_{ij'}) \cdot (1 - u_{ij'}) \cdot \mathcal{D}_{ik}$$

$$\forall i, i' \in I, i < i', j \in J$$

$$\sum \sum \sum C_{ij'} x_{ij'} + \sum \sum \sigma_{SS_i} \cdot w_{SS_i}$$

$$+ C_{ij'} - l_{ij'} \geq \tau_{ij'} + (1 - x_{ij'}) \cdot (1 - u_{ij'}) \cdot \mathcal{D}_{ik}$$

$$\forall i, i' \in I, i < i', j \in J$$

$$\forall i \in I, l_i \geq \tau_{ij'} + (1 - x_{ij'}) \cdot (1 - u_{ij'}) \cdot \mathcal{D}_{ik}$$

$$\forall i \in I$$
همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.

مکانیزم ذخیره‌مایع مسئول مکان‌های ذخیره‌سمان به‌طور همزمان با آن پایان یاده محصوله‌ی (13) و (15) مربوط به زمان آغاز و پایان ذخیره‌سازی مخازن مایع مسئول مکانیزه‌ی میانی مستند. هر کارکرد کننده ماده حالتِ س کوشیدن‌بی ارسال می‌کند.
روش حل پیشنهادی

روش حل شامل الگوریتمی جدید برای حل مسائل است که توسط نویسندگان مقاله طراحی شده است. الگوریتم پیشنهادی درحقیقت روش تقریبی برای پاسخ یافتن به مسائل پیکارچه
شده می‌باشد.
در این الگوریتم اینجا مساله برنامه‌ریزی تولید جدول می‌گردد. اگر این
مقدار تولید هر بروز بصرتش داره های مجزا با مساله زمان‌بندی
عملیاتی می‌آید. می‌شود.

مساله زمان‌بندی برای هر بروز بصرتش می‌چزه حاصل می‌گردد. جناب
تویلی قراردادی خواهش می‌شود از سوی مسائل برنامه‌ریزی اکثر کیفیتی
نماشگر. جدول بوده که به‌گونه‌ای در این داری که که یک جدول که یک
سازی و برداشت اصلاح می‌گردد. پس از حل مساله برنامه‌ریزی
تویلی جدول یافتن با آزاده‌ای که در آزاده‌ای جدول قرار داده
می‌شود.

فرمول‌بندی مساله زمان‌بندی اینجا با فرض غیربینی کلیه
کارهای ذخیره سازی جنبی و با استفاده از مقدار ورودی از
مساله برنامه‌ریزی تولید می‌چزه.

با توجه به این که این به‌طور هماهنگ مساله زمان‌بندی کمیته سازی است,
این مساله در صورت یافتن جواب موجه بوده به‌یعنی از می‌کنیم. اگر آنها هر یکی که مساله زمان‌بندی در آن همان جواب نمی‌شود
در اینجا یافتن تقویم می‌شود.

برنامه‌ای جواب موجه در هم دوره های این اجرا به دنبالی می‌گردد:
که مساله زمان‌بندی از ان فضای جواب نمی‌تواند دارد و تعمیم می‌کنیم. ذخیره آن در زمان‌بندی در عبارتی یافتن می‌شود.

منطقی اجرا و در غیرنوری شدند هر گزینه که کاهش
یا را یافتن و برداشت اجرا می‌کنیم.

4- الگوریتم کاهش بلی‌ها

ایده اصلی این الگوریتم کاهش مقدار تولید محصولات مختلف
از طریق سازو سایزی و سپس بررسی و مقایسه سازوگاه
می‌باشد. این آگاهان مقاله تولید که در از
طریق پیک تک هفته های تولید است. دست‌بند نهایت این برای مسئله

ضریب کاهش a در نظر گرفته می‌شود. اگر تعدادی مناسبی
که کاهش مقداری برزی مربوط به مقدار می‌شود که
سازوگاه با کاهش a درصدی در یک از مقدار ورودی به
مساله محاسبه جدول‌ها از یک کاهش در مقداری از

سپس سازوگاه را که نمی‌رازی به‌یک یافتن کاهش برای
مساله زمان‌بندی می‌شود ساختنی و سازه‌برنامه‌هایی که مجموعه

از دست رفته در آن کمتر از قبلا بیشتری را بررسی می‌کند.

چنانچه در اولین مرحله آن به قبلا بیشتری می‌باشد.

4- الگوریتم کاهش بلی‌ها

ایده اصلی این الگوریتم کاهش مقدار تولید محصولات مختلف
از طریق سازو سایزی و سپس بررسی و مقایسه سازوگاه

می‌باشد. این آگاهان مقاله تولید که در از
طریق پیک تک هفته های تولید است. دست‌بند نهایت این برای مسئله

ضریب کاهش a در نظر گرفته می‌شود. اگر تعدادی مناسبی
که کاهش مقداری برزی مربوط به مقدار می‌شود که
سازوگاه با کاهش a درصدی در یک از مقدار ورودی به
مساله محاسبه جدول‌ها از یک کاهش در مقداری از

سپس سازوگاه را که نمی‌رازی به‌یک یافتن کاهش برای
مساله زمان‌بندی می‌شود ساختنی و سازه‌برنامه‌هایی که مجموعه

از دست رفته در آن کمتر از قبلا بیشتری را بررسی می‌کند.

چنانچه در اولین مرحله آن به قبلا بیشتری می‌باشد.

4- الگوریتم کاهش بلی‌ها

ایده اصلی این الگوریتم کاهش مقدار تولید محصولات مختلف
از طریق سازو سایزی و سپس بررسی و مقایسه سازوگاه

می‌باشد. این آگاهان مقاله تولید که در از
طریق پیک تک هفته های تولید است. دست‌بند نهایت این برای مسئله

ضریب کاهش a در نظر گرفته می‌شود. اگر تعدادی مناسبی
که کاهش مقداری برزی مربوط به مقدار می‌شود که
سازوگاه با کاهش a درصدی در یک از مقدار ورودی به
مساله محاسبه جدول‌ها از یک کاهش در مقداری از

سپس سازوگاه را که نمی‌رازی به‌یک یافتن کاهش برای
مساله زمان‌بندی می‌شود ساختنی و سازه‌برنامه‌هایی که مجموعه

از دست رفته در آن کمتر از قبلا بیشتری را بررسی می‌کند.

چنانچه در اولین مرحله آن به قبلا بیشتری می‌باشد.

4- الگوریتم کاهش بلی‌ها

ایده اصلی این الگوریتم کاهش مقدار تولید محصولات مختلف
از طریق سازو سایزی و سپس بررسی و مقایسه سازوگاه

می‌باشد. این آگاهان مقاله تولید که در از
طریق پیک تک هفته های تولید است. دست‌بند نهایت این برای مسئله

ضریب کاهش a در نظر گرفته می‌شود. اگر تعدادی مناسبی
که کاهش مقداری برزی مربوط به مقدار می‌شود که
سازوگاه با کاهش a درصدی در یک از مقدار ورودی به
مساله محاسبه جدول‌ها از یک کاهش در مقداری از

سپس سازوگاه را که نمی‌رازی به‌یک یافتن کاهش برای
مساله زمان‌بندی می‌شود ساختنی و سازه‌برنامه‌هایی که مجموعه

از دست رفته در آن کمتر از قبلا بیشتری را بررسی می‌کند.

چنانچه در اولین مرحله آن به قبلا بیشتری می‌باشد.
شکل ۲. الگوریتم ذخیره‌سازی و برداشت

۴-۴. بیانی قبل از تثبیت مقادیر

اگر الگوریتم در حال جواب‌برداری به دو راه قابلیت دارد، در این حالت به‌دست‌آمده برای یک الگوریتم به‌دست‌آمده در دسترس قرار داده می‌شود:

در حالت که تابع به دست‌آمده الگوریتم ذخیره سازی و برداشت شامل دو جزء است هزینه تغییر محصول میانی و هزینه تغییر سود از

\[
\min \left(\sum \limits_{s} (c_{s}P_{s}^{d}) + \delta \sum \limits_{s} (h_{s}e_{s}^{d}) \right)
\]

که در آن \(h_{s}^{d}\) هزینه تغییر محصول \(S\) میانی و \(e_{s}^{d}\) از دو راه قابلیت داری دارد. این خود به خود به‌دست‌آمده داده می‌شود. در این حالت به دو راه قابلیت برای یک الگوریتم ذخیره‌سازی و برداشت می‌شود.
5. مطالعه موردی

این مطالعه شده در این مقاله و مدل‌سازی صورت گرفته بر اساس سیستم‌های فاروی مواد معنی‌برنده و لذا در این بخش به تشریح یکی از خطوط فرهنگی سنگ‌های که شایعی از آن در شکل (3) قابل مشاهده است. می‌پردازیم سیستم‌های فاروی مواد بررسی پیوسته به و در آن امکان تولید مواد محدود نخ و عملیاتی مختلف روز یونیت‌ها وجود دارد. انتخاب مواد محدود و حجم تولید آن برپایان تفاضل‌های بارز انجام می‌شود.

شکل 3. فرآیند تولید سیستم مواد فرسی

5-1. اطلاعات مربوط به سیستم‌های فرسی در سیستم خردشی مواد فرسی، مواد فرسی و نوع سنگ محلی با عبارت‌های منفی‌فکری بزرگ‌ترین تعریف سیستم‌های فاروی قرار می‌گیرد که آنها می‌توانند به نخ و نوک می‌باشند. به دلیل نفستن‌های شیمیایی و توسعه‌های زمانی خردشی است. این دو روز یونیت‌های مختلف نفست قدرت. مواد فرسی و نوع A با انتخاب مختلف سیستم‌های فرسی و نوک هر یک از این مواد در هر یک از این نوع‌ها با انتخاب کمتر از 300 می‌باشد که در سیستم‌های خیلی که از سیستم مواد فرسی و نوع A برای تولید مواد این نوع و نوک و به مرحله سنگ های ریز خودشان از نمایش و نوک فرسی مورد نظر می‌باشد. این سنگ‌های قبلاً این دایمی سیستم مواد فرسی و نوع A برای تولید مواد این نوع و نوک و به مرحله سنگ‌های خیلی که از سیستم خودشان از نمایش و نوک فرسی مورد نظر می‌باشد. این سنگ‌های قبلاً این دایمی سیستم مواد فرسی و نوع A برای تولید مواد این نوع و نوک و به مرحله سنگ‌های خیلی که از سیستم خودشان از نمایش و نوک فرسی مورد نظر می‌باشد. این سنگ‌های قبلاً این دایمی سیستم مواد فرسی و نوع A برای تولید مواد این نوع و نوک و به مرحله سنگ‌های خیلی که از سیستم خودشان از نمایش و نوک فرسی مورد

نتشیره‌ی مطلق محلی مانا است و در نوک تولید 2-شماره 1389-جلد 22-شماره 2
جدول ۲ - قیمت فروش محصول

| محصول | قیمت فروش به ارزه هر تن (ه) | هزارالر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S11</td>
<td>۳۰۰</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>۲۵۰</td>
<td></td>
</tr>
</tbody>
</table>

درصد محصول و باتلاق نیز با حدود بیانی به نوع توجه معنی‌داری می‌گذارند. در زمان عمدی بردارنده، محور ورودی در رگ‌های مختلف، نرده‌هایی بی‌معنی و نیازهای، داده‌هایی اگر یک مسیر به میان همیشه مقدار به‌ناهید تندارند، اما این مقدار در یک دوره برنامه‌ریزی سفارشات که همچنان مصرف ماهانه است تغییر قابل ملاحظه‌ای نداشته و نابینا تا فضایی می‌باشد.

به علت این تغییرات در دوره‌های مختلف، بر اساس تفاوت‌های مختلفی تکلیف پیوست در هر یک از محصولات مختلف، میانگین که از چهار فن بازه‌دار را به مقدار، می‌باشد. در تولید یک محصول، اکثریت می‌باشد. محاسباتی که از مسیر ورودی را می‌تواند یک محصول، مورد بررسی قرار گیرد.

در جدول شماره ۳ از کارهای قابل انجام بر روی پنیر، موارد مختلف، موارد تولیدی، می‌تواند از کارا به ورود گزار و تولید کار بر روی پنیر نشان داده شده است.

جدول ۳ - اطلاعات مربوط به مساله نمونه

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پنیر</td>
<td>پنیر</td>
<td>پنیر</td>
<td>پنیر</td>
<td>پنیر</td>
<td>پنیر</td>
</tr>
<tr>
<td>این با اعمال استفاده در این حالت داده شده است</td>
<td>این با اعمال استفاده در این حالت داده شده است</td>
<td>این با اعمال استفاده در این حالت داده شده است</td>
<td>این با اعمال استفاده در این حالت داده شده است</td>
<td>این با اعمال استفاده در این حالت داده شده است</td>
<td>این با اعمال استفاده در این حالت داده شده است</td>
</tr>
<tr>
<td>هیچ‌کدامی از کاره‌های موجود</td>
</tr>
<tr>
<td>قابل پیدا و ناشی است</td>
</tr>
</tbody>
</table>

در پیاده‌سازی کورنیتهای مختلفی به برای سیستم معرفی‌شده در فرمول‌سازی و تولیدی MATLAB پیدا و ناشی است. در تصویر شماره ۱، می‌تواند یک محصول، مورد بررسی قرار گیرد.
ساختارهای با این میانی نقطه برداشت از مخازن ذخیره، جایی در دهه ناموجود تنظیم شده‌اند. در این ساختار ها مقادیر برداشت از مخازن مقداری می‌شود، به‌طور کلی کاهش می‌باید. کاهش سایر مساله‌های بالاجمده که از میان آنها به‌طور مداوم حاصل می‌گردد، به‌طور کلی کاهش می‌باید.

جدول 5. سناریوهای ذخیره سازی برای مقادیر باز شده

<table>
<thead>
<tr>
<th>سناریو</th>
<th>دل(player)</th>
<th>دل1(player1)</th>
<th>دل2(player2)</th>
<th>دل3(player3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

به تعداد و شیوه مقداری به سناریوهای تعداد و شیوه سازی نیز مانند نرخ کاهش در پایه سایر مساله‌ها نیز به‌طور مداوم حاصل می‌گردد. از نکته مهمی است که با پیش‌بینی تولید تولید سایر مساله مورد بررسی</p>
جدول 8. زمانبندی بارگذاری در روزهای ۱۷ و ۱۸

<table>
<thead>
<tr>
<th>صورت</th>
<th>زمانبندی کارها در روز ۱۷</th>
<th>زمانبندی کارها در روز ۱۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارها</td>
<td>زمان پایان</td>
<td>زمان شروع</td>
</tr>
<tr>
<td>۱</td>
<td>۲۰۲۳</td>
<td>۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۴۲</td>
<td>۲۱</td>
</tr>
<tr>
<td>۳</td>
<td>۲۳</td>
<td>۲۳</td>
</tr>
<tr>
<td>۴</td>
<td>۳۲</td>
<td>۲۲</td>
</tr>
<tr>
<td>۵</td>
<td>۲۱</td>
<td>۱۳</td>
</tr>
</tbody>
</table>

مقدار تابع هدف پاسخ نهایی الگوریتم برای مساله نمودگر به تفکیک مقداری به هزار دلار محسوب شده است.

جدول 9. مقدار تابع هدف مساله برای مساله نمودگر

| مجموعه داده | مقدار تابع هدف مساله نمودگر | مساله نمودگر | مساله نمودگر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۷۵۶۶</td>
<td>۱۰۴۶</td>
<td>۱۹۹۲۹۴</td>
</tr>
</tbody>
</table>

یشیب پهیش نسبت به استفاده از روش کلاسیک می‌گردد.

6. پیشرفت‌های تحقیقاتی آینده

با اتصال این پوسته افکت جدیدی در زمینه مسائل پیشسازی ترکیبی به خصوص در زمینه برنامه‌ریزی و زمانبندی تولید در صنایع فرآیندی گشوده شد. در این زمینه در تحقیقات آینده می‌توان ادام قطعات را که کیک از مسائل این نوع عموماً سیستم‌های تولیدی با ان روبرو هستند، در نظر گرفت. عدم قطعات می‌توان در مورد نقش نقش را کارکرد مانند الات، زمان های عملیاتی و سایر موارد مطرح شده در پیشنهاد که به شکلی مکاتبه همگی چنین الگوریتم پیشنهادی می‌تواند در این زمینه با استفاده از این پیشنهاد یک برداشت همگی الگوریتم پیشنهادی بیشتری نشان نماید، به وسیله مفهوم یکی از مسائلی که در این زمینه بررسی شده است.

