Search published articles

Showing 17 results for Construction

F. Sanati , S.m. Seyedhoseini,
Volume 19, Issue 1 (3-2008)

Abstract: At the last decade of the 20th century, Womack et. Al introduced Lean concept to the industrial world. Since 1990 up to now, existed studies mostly have focused on lean production in the step of manufacturing, but in this research leanness concept has developed in the plant life cycle. In this paper leanness concept will be described as elimination of wastes in the phases of investment, plant design & construction(hardware), organization & systems design (software) and these three steps will be added to, elimination of previously described seven wastes in production step. For this purpose at first, the types of wastes in the above mentioned phases are defined by using Axiomatic Design methodology. After defining the types of wastes, a model for assessment of leanness is submitted. In this quantitative model, amount of leanness in each phase will be determined and combined to make a unique measure for total leanness. Dimensions of leanness are shown for quick understanding, by using a spider diagram. In the last section of the paper, the results of an example of the application of this model in fan industry are brought. This example shows the simplicity and powerfully of the model to determine the leanness in before production phases. © 2008 Authors all rights reserved.


M. Jahir Bin Alam, M.a. Ansery, R.k Chowdhuary, J. Uddin Ahmed, S. Islam , S. Rahman ,
Volume 19, Issue 3 (7-2008)

Abstract: Sylhet is the northeastern region of Bangladesh and probability of earthquake in Sylhet is higher than other areas of this zone. Among 27 wards, Ward no. 14 is one of the important largest Wards in Sylhet city and a densely populated one. It was clear from the survey works, 42.8% buildings are belongs to Building with RCC frame 54.03% buildings are Masonry buildings. Another interesting finding is 325 houses fall in the category of Houses with resident 1-10. The occurrence of an earthquake of PGA value 0.9g on ward no. 14 causes massive loss of lives and damage to buildings. Depending on the time of the day 147 to 603 people may be killed due to structural collapse and the buildings of worth approximately TK.32.00 core may be damaged.

, , ,
Volume 20, Issue 1 (5-2009)

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show the relations between essential components in complex systems. In this paper, a novel learning method is proposed to construct FCMs based on historical data and by using meta-heuristic: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). Implementation of the proposed method has demonstrated via real data of a purchase system in order to simulate the system’s behavior.
S.m. Mohammad Seyedhoseini , M. Ali Hatefi,
Volume 20, Issue 1 (5-2009)

  Selecting an effective project plan is a significant area in the project management. The present paper introduces a technique to identify the project plan efficient frontier for assessing the alternative project plans and selecting the best plan. The efficient frontier includes two criteria: the project cost and the project time. Besides, the paper presents a scheme to incorporate Directed Acyclic Graph (DAG) into the project risk analysis.

This scheme is used to estimate the expected impacts of the occurrence of the project risks on the project cost and the project time. Also, a theoretical model is defined to provide integration between project risk analysis and overall project planning using the breakdown structures. We believe that applying the proposed technique helps the company’s managers in most effective manner dealing with his complicated project plan assessment and selection problems. The application of the technique was implemented in the companies in construction industry in which represented a considerable cost and time improvements.
F. Khaksar-Haghani, N. Javadian, R. Tavakkoli-Moghaddam , A. Baboli , R. Kia,
Volume 22, Issue 3 (9-2011)


  Dynamic cellular manufacturing systems,

  Mixed-integer non-linear programming,

  Production planning, Manufacturing attributes


This paper presents a novel mixed-integer non-linear programming model for the design of a dynamic cellular manufacturing system (DCMS) based on production planning (PP) decisions and several manufacturing attributes. Such an integrated DCMS model with an extensive coverage of important design features has not been proposed yet and incorporates several manufacturing attributes including alternative process routings, operation sequence, processing time, production volume of parts, purchasing machine, duplicate machines, machine depot, machine capacity, lot splitting, material flow conservation equations, inflation coefficient, cell workload balancing, budget constraints for cell construction and machine procurement, varying number of formed cells, worker capacity, holding inventories and backorders, outsourcing part-operations, warehouse capacity, and cell reconfiguration. The objective of the integrated model is to minimize the total costs of cell construction, cell unemployment, machine overhead and machine processing, part-operations setup and production, outsourcing, backorders, inventory holding, material handling between system and warehouse, intra-cell and inter-cell movements, purchasing new machines, and machine relocation/installation/uninstallation. A comprehensive numerical example taken from the literature is solved by the Lingo software to illustrate the performance of the proposed model in handling the PP decisions and to investigate the incorporated manufacturing attributes in an integrated DCMS .

M Shofoluwe, A. Ofori-Boadu, L. Waller, C Bock-Hyeng,
Volume 23, Issue 1 (3-2012)

New home buyers in United States are becoming more discriminating in their home buying decision. They are demanding quality construction at reasonable prices. The current state of construction market also gives construction buyers more ammunition to be more discriminate when they choose to purchase homes.  To be competitive and remain in business, housing contractors and developers must meet the growing quality demands of the customers. Thus, the competition to meet the buyers’ quality demand has forced many of them to rethink the ways they build their homes. The improved designs, and construction methods and practices have resulted into award-winning quality-built homes for many of these contractors. This study was conducted to examine the quality improvement characteristics of selected award-winning residential builders and housing developers in selected counties in North Carolina, U.S.A.  Through a structured questionnaire, the researchers collected information relative to their common quality characteristics, organizational culture and overall business practices. Data analysis was performed using basic descriptive statistics. The results show that regular inspection of work in progress, feedback from customers, and immediate attention to punch list items, were highly ranked among the quality characteristics evaluated.
Farnad Nasirzadeh, Hamid Reza Maleki, Mostafa Khanzadi, Hojjat Mianabadi,
Volume 24, Issue 1 (2-2013)

Implementation of the risk management concepts into construction practice may enhance the performance of project by taking appropriate response actions against identified risks. This research proposes a multi-criteria group decision making approach for the evaluation of different alternative response scenarios. To take into account the uncertainties inherent in evaluation process, fuzzy logic is integrated into the revaluation process. To evaluate alternative response scenarios, first the collective group weight of each criterion is calculated considering opinions of a group consisted of five experts. As each expert has its own ideas, attitudes, knowledge and personalities, different experts will give their preferences in different ways. Fuzzy preference relations are used to unify the opinions of different experts. After computation of collective weights, the best alternative response scenario is selected by the use of proposed fuzzy group decision making methodology which aggregates opinions of different experts. To evaluate the performance of the proposed methodology, it is implemented in a real project and the best alternative responses scenario is selected for one of the identified risks.
Ali Shahandeh Nookabadi, Mohammad Reza Yadoolahpour, Soheila Kavosh,
Volume 24, Issue 1 (2-2013)

Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be an FLP (Facility Location Problem). However, if links can be added to the network at a reasonable cost, the problem will then be a combination of facility location and NDP (Network Design Problem) hence, called FLNDP (Facility Location Network Design Problem), a more general variant of FLP. In previous studies of this problem, capacity of facilities was considered to be a constraint while capacity of links was not considered at all. The proposed MIP model considers capacity of facilities and links as decision variables. This approach increases the utilization of facilities and links, and prevents the construction of links and location of facilities with low utilization. Furthermore, facility location cost (link construction cost) in the proposed model is supposed to be a function of the associated facility (link) capacity. Computational experiments as well as sensitivity analyses performed indicate the efficiency of the model.
Mostafa Khanzadi, Farnad Nasirzadeh, Mahdi Rezaie,
Volume 24, Issue 3 (9-2013)

Allocation of construction risks between clients and their contractors has a significant impact on the total construction costs. This paper presents a system dynamics (SD)-based approach for quantitative risk allocation. Using the proposed SD based approach, all the factors affecting the risk allocation process are modeled. The contractor’s defensive strategies against the one-sided risk allocation are simulated using governing feedback loops. The full-impact of different risk allocation strategies may efficiently be modeled, simulated and quantified in terms of time and cost by the proposed object-oriented simulation methodology. The project cost is simulated at different percentages of risk allocation and the optimum percentage of risk allocation is determined as a point in which the project cost is minimized. To evaluate the performance of the proposed method, it has been implemented in a pipe-line project. The optimal risk allocation strategy is determined for the inflation risk as one of the most important identified risks.
Mahdi Ruhparvar, Hamed Mazandarani Zadeh, Farnad Nasirzadeh,
Volume 25, Issue 2 (5-2014)

An equitable risk allocation between contracting parties plays a vital role in enhancing the performance of the project. This research presents a new quantitative risk allocation approach by integrating fuzzy logic and bargaining game theory. Owing to the imprecise and uncertain nature of players’ payoffs at different risk allocation strategies, fuzzy logic is implemented to determine the value of players’ payoffs based on the experience and subjective judgment of experts involved in the project. Having determined the players' payoffs, bargaining game theory is then applied to find the equitable risk allocation between the client and contractor. Four different methods including symmetric Nash, non-symmetric Nash, non-symmetric Kalai–Smorodinsky and non-symmetric area monotonic are implemented to determine the equitable risk allocation. To evaluate the performance of the proposed model, it is implemented in a pipeline project and the quantitative risk allocation is performed for the inflation risk as one of the most significant identified risks.
Mr. Virender Narula , Dr. Sandeep Grover,
Volume 26, Issue 1 (3-2015)

There has been considerable number of papers published related to Six Sigma applications in manufacturing and service organizations. However, very few studies are done on reviewing the literature of Six Sigma in all the areas including manufacturing, construction, education, financial service, BPOs and healthcare etc. Considering the contribution of Six Sigma in recent time, a more comprehensive review is presented in this paper. The authors have reviewed Six Sigma literature in the way that would help research academicians and practitioners to take a closer look at the growth, development, and applications of this technique. The authors have reviewed various journal papers and suggested different schemes of classification. In addition, certain gap areas are identified that would help researchers in further research.
Dr. Yahia Zare Mehrjerdi, Ehsan Haqiqat,
Volume 26, Issue 4 (11-2015)

Abstract Project management in construction industry, in many cases, is imperfect with respect to the integration of Occupational Health and Safety (OHS) risks. This imperfection exhibits itself as complications affecting the riskiness of industrial procedures and is illustrated usually by poor awareness of OHS within project teams. Difficulties on OHS regularly came about in the construction industry. The integration of OHS risk is not systematic in construction areas in spite of progressing laws and management systems. As project safety and risk evaluation in construction industry is an important issue, thus, the way on doing evaluation and liability of estimation is necessary. In this paper, we propose a new systematic approach based on Latin Hypercube Sampling (LHS) for integrating occupational health and safety into project risk evaluation. This approach tries to identify and evaluate reinforcement effects in a systematic approach for integrating OHS risks into project risk assessment. Furthermore, the proposed method allows evaluating and comparing OHS risks before and after the mitigation plan. A case study is used to prove the workability, credibility of the risk evaluation approach and uncomplicated integration of OHS risks at a construction project. This approach enables continual revaluation of criteria over the direction of the project or when new information is obtained. This model enables the decision makers such as project managers to integrate OHS risks toward schedule plan and compare them before and after the mitigation plan. The mentioned model is found to be useful for predicting OHS risks in construction industries and thus avoiding accidents over the path of the project.


Ahmad Makui, Pooria Moeinzadeh, Morteza Bagherpour,
Volume 27, Issue 3 (9-2016)

Due to the particular importance of projects in human life and in organizations, proper project management has been always regarded highly by researchers and practitioners. Recent advances in technology and fundamental changes in most scientific areas have affected projects and made their nature and environmental circumstances much more complex than in the past. Fortunately, in recent years, many scholars have recognized the importance of complexity in modern project management and tried to identify its various aspects. Furthermore, one of the main factors for a project’s success is the assignment of an appropriate project manager. Many studies have been done about project managers' competencies and the selection methods of a suitable project manager. In most of these researches, the amount and type of project complexity have been explained as influential factors for determining the competent project manager. However, a specific approach for project manager selection considering the complexity of projects is not provided yet. Hence, in this paper we try to design and implement a fuzzy group decision making approach to allocate the best project manager taking into account the project complexity. Also, owing to the importance of construction projects in the development of countries' basic infrastructures, we exclusively studied this kind of projects. Finally, it should be noted that from the viewpoint of complexity theory, system complexity can exist in two forms: static and dynamic. Therefore, considering the breadth of issues related to each of these two complexity areas, just the static complexity of construction projects has been studied here.

Babak Shirazi,
Volume 28, Issue 4 (11-2017)

Resource planning in large-scale construction projects has been a complicated management issue requiring mechanisms to facilitate decision making for managers. In the present study, a computer-aided simulation model is developed based on concurrent control of resources and revenue/expenditure. The proposed method responds to the demand of resource management and scheduling in shell material embankment activities regarding large-scale dam projects of Iran. The model develops a methodology for concurrent management of resources and revenue/expenditure estimation of dam's projects. This real-time control allows managers to simulate several scenarios and adopt the capability of complicated working policies. Results validation shows that the proposed model will assist project managers as a decision support tool in cost-efficient executive policymaking on resource configuration.
Rana Imannezhad, Soroush Avakh Darestani,
Volume 29, Issue 3 (9-2018)

Project scheduling problem with resources constraint is a well-known problem in the field of project management. The applicable nature of this problem has caused the researchers’ tendency to it. In this study, project scheduling with resource constraints and the possibility of interruption of project activities as well as renewable resources constraint has been also applied along with a case study on construction projects. Construction projects involve complex levels of work. Making wrong decisions in selecting methods and how to allocate the necessary resources such as manpower and equipment can lead to the results such as increasing the predetermined cost and time. According to NP-Hard nature of the problem, it is very difficult or even impossible to obtain optimal solution using optimization software and traditional methods. In project scheduling using CPM method, critical path is widely used; however, in this method, the resource constraints is not considered. Project Scheduling seek proper sequence for doing the project activities. This study has been conducted using Bees meta-heuristic algorithm, with the aim of optimizing the project completion time. Finally, the results obtained from three algorithms and GAMS software shows that this algorithm has better performance than and the solution among the other algorithms and has achieved the accurate solutions.
[1] Critical Path Method

Seyed Farid Ghannadpour, Ali Rezahoseini, Siamak Noori, Morteza Yazdani,
Volume 30, Issue 1 (3-2019)

In order to manage a project with integrity, a cohesive communication is needed between its various sections; possible risks, identification of stakeholders, providing the necessary resources on time and managing their availability, focusing on the approved budget and satisfactory quality the project can be successfully done. In the recent year BIM has as new aspects to engineering and architecture, and has become an accepted platform for planning and executing construction projects and contributed to integration of various fields and. also, project management standards, such as PMBOK, have come to aid construction managers. Through the basic capacities of BIM, and questionnaires according to aspects of PMBOK, the present study tries to identify the superior effects of BIM on project management. Moreover, it seeks to recognize the most significant aspects of BIM application on project management. by employing the FANP-AVIKOR decision making method to prioritize the parameters of the collected results, the study’s conclusion will indicate that almost all of PMBOK aspects equally benefit from using BIM; in addition, it will show that 3D BIM capacities, including clash detection, plan correction, are superior in comparison with 6D BIM and 7D BIM capacities.

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb