Search published articles

Showing 4 results for Zarei

Meysam Zareiee, Abbas Dideban, Ali A. Orouji ,
Volume 22, Issue 2 (IJIEPR 2011)


  Discrete event system,

  Supervisory control,

  Petri Net, Constraint


This paper presents a method to manage the time in a manufacturing system for obtaining an optimized model. The system in this paper is modeled by the timed Petri net and the optimization is performed based on the structural properties of Petri nets. In a system there are some states which are called forbidden states and the system must be avoided from entering them. In Petri nets, this avoidance can be performed by using control places. But in a timed Petri net, using control places may lead to decreasing the speed of systems. This problem will be shown on a manufacturing system. So, a method will be proposed for increasing the speed of the system without using control places .

Abbas Dideban, Maysam Zareiee, Ali A. Orouji, Hassan Rezaei Soleymanpour ,
Volume 24, Issue 1 (IJIEPR 2013)

This paper deals with the problem of forbidden states in discrete event systems modeled by Petri Net. To avoid the forbidden states, some constraints which are called Generalized Mutual Exclusion Constraints can be assigned to them. Enforcing these constraints on the system can be performed using control places. However, when the number of these constraints is large, a large number of control places must be connected to the system which complicates the model of controller. In this paper, the objective is to propose a general method for reducing the number of the mentioned constraints and consequently the number of control places. This method is based on mixing some constraints for obtaining a constraint verifying all of them which is performed using the optimization algorithms. The obtained controller after reducing the number of the control places is maximally permissive.
Vorya Zarei, Iraj Mahdavi, Reza Tavakkoli-Moghaddam, Nezam Mahdavi-Amiri,
Volume 24, Issue 1 (IJIEPR 2013)

The existing works considering the flow-based discount factor in the hub and spoke problems, assume that increasing the amount of flow passing through each edge of network continuously decreases the unit flow transportation cost. Although a higher volume of flow allows for using wider links and consequently cheaper transportation, but the unit of flow enjoys more discounts, quite like replacing the current link by a cheaper link type (i.e., increasing the volume of flow without changing the link type would not affects the unit flow transportation cost). Here, we take a new approach, introducing multi-level capacities to design hub and spoke networks, while alternative links with known capacities, installation costs and discount factors are available to be installed on each network edge. The flow transportation cost and link installation cost are calculated according to the type of links installed on the network edges thus, not only the correct optimum hub location and spoke allocation is determined, but also the appropriate link type to be installed on the network edges are specified. The capacitated multiple allocation p-hub median problem (CMApHMP) using the multi-level capacity approach is then formulated as a mixed-integer linear program (MILP). We also present a new MILP for the hub location problem using a similar approach in order to restrict the amount of flow transmitting through the hubs. Defining diseconomies of scale for each hub type, the model is to present congestion at the hubs and balance the transmitting flow between the hubs. Two new formulations are presented for both the p-hub median and the hub location problems which requiring a flow between two non-hub nodes to be transferred directly, when a direct link between the nodes is available. These models are useful for the general cost structure where the costs are not required to satisfy the triangular inequality. Direct links between non-hub nodes are allowed in all the proposed formulations.
Dr. Yahia Zare Mehrjerdi, Mahnaz Zarei,
Volume 26, Issue 2 (IJIEPR 2015)

Abstract Nowadays supply chain management has become one of the powerful business concepts for organizations to gain a competitive advantage in global market. This is the reason that now competition between the firms has been replaced by competitiveness among the supply chains. Moreover, the popular literature dealing with supply chain is replete with discussions of leanness and agility. Agile manufacturing is adopted where demand is volatile while lean manufacturing is used in stable demands. However, in some situations it is advisable to utilize a different paradigm, called leagility, to enable a total supply chain strategy. Although, various generic hybrids have been defined to clarify means of satisfying the conflicting requirements of low cost and fast response, little research is available to provide approaches to enhance supply chain leagility. By linking Leagile Attributes and Leagile Enablers (LAs and LEs), this paper, based upon Quality Function Deployment (QFD), strives to identify viable LEs to achieve a defined set of LAs. Due to its wide applicability, AHP is deployed to prioritize LAs. Also, fuzzy logic is used to deal with linguistics judgments expressing relationships and correlations required in QFD. To illustrate the usefulness and ease of application of the approach, the approach was exemplified with the help of a case study in chemical industry.


Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb