Search published articles

Showing 3 results for Ghasemi

Ali Salmasnia, Ebrahim Ghasemi, Hadi Mokhtari,
Volume 27, Issue 4 (IJIEPR 2016)

This study aims to select optimal maintenance strategy for components of an electric motor of the National Iranian Oil Refining and Distribution Company. In this regard, a method based on revised multi choice goal programming and analytic hierarchy process (AHP) is presented. Since improving the equipment reliability is an important issue, reliability centered maintenance (RCM) strategies are introduced in this paper. Furthermore, on one hand, we know that maintenance cost consists of a considerable percentage of production cost; on the other hand, the risk of equipment failure is a main factor on personnel’s safety. Consequently, the cost and risk factors are selected as important criteria of maintenance strategies.

Mahdi Bashiri, Elaheh Ghasemi,
Volume 29, Issue 2 (IJIEPR 2018)

Supplying of blood and blood products is one of the most challenging issues in the healthcare system since blood is as extremely perishable and vital good and donation of blood is a voluntary work. In this paper, we propose a two-stage stochastic selective-covering-inventory-routing (SCIR) model to supply whole blood under uncertainty. Here, set of discrete scenarios are used to display uncertainty in stochastic parameters. Both of the fixed blood center and bloodmobile facilities are considered in this study. We suppose that the number of bloodmobiles is indicated in the first stage before knowing which scenario is occurred. To verify the validation of the presented SCIR model to supply whole blood, we examine the impact of parameters variation on the model outputs and cost function using the CPLEX solver. Also the results of comparison between the stochastic approach and expected value approach are discussed.
Shadan Sadighbehzadi, Zohreh Moghaddas, Amirreza Keyghobadi, Mohsen Vaez-Ghasemi,
Volume 29, Issue 4 (IJIEPR 2018)

Natural disasters and crisis are inevitable and each year impose destructive effects on human as injuries and damage to property. In natural  disasters and after the outbreak of the crisis, demand for logistical goods and services increase. Effective distribution of emergency aid could have a significant role in minimizing the damage and fatal accident. In this study, a three-level relief chain including a number of suppliers in fixed locations, candidate distribution centers and affected areas at certain points are considered. For this purpose a mixed integer nonlinear programming model is proposed for open transportation location routing problem by considering split delivery of demand. In order to solve a realistic problem, foregoing parameters are considered as fuzzy in our proposed mode. The objectives of the proposed model include total cost minimization, minimization of the maximum travel time of
vehicles and minimization of unmet demands. In order to solve the problem of the proposed model, fuzzy multi-objective planning is used. For efficiency and effectiveness of the proposed model and solution approach, several numerical examples are studied. Computational results show the effectiveness and efficiency of the model and the proposed approach.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb