Search published articles


Showing 2 results for Eghbali

Firoozeh Kaveh, Reza Tavakkoli-Moghaddam, Amin Jamili, Maryam Eghbali,
Volume 27, Issue 4 (IJIEPR 2016)
Abstract

This paper presents a bi-objective capacitated hub arc location problem with single assignment for designing a metro network with an elastic demand. In the literature, it is widely supposed that the network created with the hub nodes is complete. In this paper, this assumption is relaxed. Moreover, in most hub location problems, the demand is assumed to be static and independent of the location of hubs. However, in real life problems, especially for locating a metro hub, the demand is dependent on the utility that is proposed by each hub. By considering the elasticity of demand, the complexity of solving the problem increases. The presented model also has the ability to compute the number of trains between each pair of two hubs. The objectives of this model are to maximize the benefits of transportation and establishing the hub facilities while minimizing the total transportation time. Furthermore, the bi-objective model is converted into a single objective one by the TH method. The significance of applicability of the developed model is demonstrated by a number of numerical experiments and some sensitivity analyses on the data inspired by the Qom monorail project. Finally, the conclusion is provided.


Mahdi Karbasian, Ali Eghbali Babadi, Fatemeh Hasani,
Volume 28, Issue 2 (IJIEPR 2017)
Abstract

Abstract

The reliability and safety of any system is the most important qualitative characteristic of a system. This qualitative characteristic is of particular importance in systems whose functions are under various stresses, such as high temperature, high speed, high pressure, etc. A considerable point, which is rarely taken into account when calculating the reliability and safety of systems, is the presence of dependency among subsystems, and this dependency causes various failures in a system, one of the most important of which is the common cause failure (CCF). Failing to consider common cause failures in the calculation of system reliabilities, leads to optimistic estimations of system reliability rates, which results in too much trust in the system. In this paper, first we deal with identifying the reliability of the input of a dynamic positioning system consisting of different environmental sensors and various positioning systems with the aid of PBS and FFBD techniques. Then, we will calculate and allocate the above-mentioned reliability with the aid of a RBD. The common cause failures of different subsystems were considered in calculating the reliability of the previously mentioned system, with the aid of IEC 61508 standard, and then the degree of the effectiveness of common cause failures on the reliability of the studied system, was obtained. Finally, by considering different assumptions for the system under study, it was proved that the less the amount of the reliability of dependent components is, the higher the effectiveness of common cause failures on the system reliability will be



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb