Search published articles

Showing 4 results for Torsional Response

H. Shakib, A. Ghasemi,
Volume 5, Issue 4 (12-2007)

An attempt has been made to explore the general trends in the seismic response of planasymmetric structures when subjected to near-fault and far-fault ground motions. Systems with structural wall elements in both orthogonal directions considering actual and common nonlinear behavior under bi-directional excitation were studied. Idealized single-storey models with uni-axial eccentricity were employed. The main findings are: The rotational response trend considering actual behavior method would be different from common behavior method assumption, when the system subjected to near-fault motions. In the former case, the minimum rotational response could be achieved, when stiffness and strength centers are located on opposite side of the mass center. In the latter case, stiffness eccentricity determines the minimum and maximum rotational response. General trends in the rotational demand for far-fault motions, considering two type behavior assumptions, are similar to the last case. Moreover, in near-fault motions, when stiffness and strength centers are located on opposite side of the mass center, stiff side displacement demand would be greater than that soft side which is contrary to the conventional guidelines. While, in farfault motions similar to near-fault motions which stiffness and strength centers are located on one side of the mass center, displacement demand would be according to conventional guidelines.
A. A. Tasnimi, M. A. Rezazadeh,
Volume 10, Issue 3 (9-2012)

The torsional capacity of unreinforced masonry brick buildings is generally inadequate to provide a stable seismic behavior. The

torsional strength is believed to be the most important parameter in earthquake resistance of masonry buildings and the shear

stresses induced in the bed joints of such building’s walls is an important key for design purposes. Brick buildings strengthened

with wire-mesh reinforced concrete overlay are used extensively for building rehabilitation in Iran. Their quick and simple

applications as well as good appearance are the main reasons for the widespread use of such strengthening technique. However,

little attention has been paid to torsional strengthening in terms of both experimental and numerical approach. This paper reports

the response and behavior of two single-story brick masonry buildings having a rigid two-way RC floor diaphragm. Both

specimens were tested under monotonic torsional moment.Numerical work was carried out using non-linear finite element

modeling. Good agreement in terms of torque–twist behavior, and crack patterns was achieved. The unique failure modes of the

specimens were modeled correctly as well. The results demonstrate the effectiveness of reinforced concrete overlay in enhancing

the torsional response of strengthened building. Having evaluated the verification of modeling, an unreinforced brick building

with wall-to-wall vulnerable connections was modeled so that the effect of these connections on torsional performance of brick

building could be studied. Then this building was strengthened with reinforced concrete overlay and the effect of strengthening

on torsional performance of brick buildings with vulnerable connections was predicted numerically.

H. Shakib, Gh. R. Atefatdoost,
Volume 12, Issue 1 (3-2014)

An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro 1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified. The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this criterion.
A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb