Search published articles


Showing 3 results for Setbacks

S.m. Moosavi, M.k. Jafari , M. Kamalian, A. Shafiee ,
Volume 8, Issue 2 (6-2010)
Abstract

Ground differential movements due to faulting have been observed to cause damage to engineered structures

and facilities. Although surface fault rupture is not a new problem, there are only a few building codes in the world

containing some type of provisions for reducing the risks. Fault setbacks or avoidance of construction in the proximity

to seismically active faults, are usually supposed as the first priority. In this paper, based on some 1-g physical

modelling tests, clear perspectives of surface fault rupture propagation and its interaction with shallow rigid

foundations are presented. It is observed that the surface fault rupture could be diverted by massive structures seated

on thick soil deposits. Where possible the fault has been deviated by the presence of the rigid foundation, which

remained undisturbed on the footwall. It is shown that the setback provision does not give generally enough assurance

that future faulting would not threaten the existing structures.


A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)
Abstract

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
Alireza Habibi, Keyvan Asadi,
Volume 15, Issue 4 (6-2017)
Abstract

One kind of the irregularities in structures, with considerable effect on seismic performance, is setback in elevation that causes large damage especially in the vicinity of the irregularity. The main objective of this research is to propose and develop drift based index to estimate damage to Reinforced Concrete Moment Resisting Frames (RCMRFs) with setback. For this purpose, first, inelastic dynamic time-history analysis is performed on several frames with different types of setbacks subjected to various earthquake records and damage to them is computed by the Park-Ang damage index. Then two relations between the damage and drift are derived by applying irregularity indices to account for setback effects. It is shown that the proposed damage indices are capable to estimate the damage index of setback frames.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb