Search published articles


Showing 20 results for Seismic Design

M. Khanzadi, G. Ghodrati Amiri, G. Abdollahzadeh Darzi,
Volume 5, Issue 1 (3-2007)
Abstract

According to performance-based seismic design method by using energy concept, in this paper it is tried to investigate the duration and damping effects on elastic input energy due to strong ground motions. Based on reliable Iranian earthquake records in four types of soils, structures were analyzed and equivalent velocity spectra were computed by using input energy. These spectra were normalized with respect to PGA and were drawn for different durations, damping ratios and soil types and then effects of these parameters were investigated on these spectra. Finally it was concluded that in average for different soil types when the duration of ground motions increases, the input energy to structure increases too. Also it was observed that input energy to structures in soft soils is larger than that for stiff soils and with increasing the stiffness of the earthquake record soil type, the input energy decreases. But damping effect on input energy is not very considerable and input energy to structure with damping ratio about 5% has the minimum value.
J. Vafaie, T. Taghikhany, M. Tehranizadeh,
Volume 9, Issue 1 (3-2011)
Abstract

The near field ground motions have a high amplitude pulse like at the beginning of the seismogram which are significantly influenced by the rupture mechanism and direction of rupture propagation. This type of ground motion cause higher demands for engineering structures and its response spectrum is dramatically different than far field spectra.

Tabriz is one of the ancient cities in

Azerbaijan province with many industrial factories, financial centers and historical monuments in North-West of Iran. In this region, North Tabriz Fault which has a well known history of intense seismic activity is passing through in close distance of urban area. In this regard investigation of near field ground motion effect on current practice seismic design spectrum in this region is necessary.

Hence, probabilistic seismic hazard analysis is carried out using appropriate attenuation relationship to consider near field effect. The peak ground acceleration (PGA) and several spectral accelerations (SA) over bedrock are estimated for different return periods and maps of iso acceleration contour lines are provided to indicate the earthquake hazard in different points of

Tabriz city.

Afterward, the generated horizontal equal-hazard spectrums considering near field effect are compared with different spectrums developed base on simple pulses model for near field motion. Both types spectrum used to verify current practice seismic design spectrum of Iranian code (2005) and International Building Code (IBC 2000). The results reveal the long-period structures which are seismically designed based on current practice seismic codes are in high risk to be damaged during near fault ground motion.


M. Mahmoudi, M. Zaree,
Volume 9, Issue 1 (3-2011)
Abstract

Inelastic deformation of structural components is generally acceptable in seismic design. In such behavior, the strength of structures increases while plastic hinges are formed in members frequently. The strength revealed during the formation of plastic hinges is called "overstrength". Overstrength is one of the important parameters in the seismic design of structures. The present study tries to evaluate the overstrength of the concentrically steel braced frames (CBFs), considering reserved strength, because of members post-buckling. As such, a static nonlinear (pushover) analysis has been performed on the model buildings with single and double bracing bays, different stories and brace configurations (chevron V, invert Vand X-bracing). It has been realized that the number of bracing bays and the height of buildings have a low effect on reserve strength due to brace post-buckling. However, these parameters have a profound effect on the overstrength factor. These results indicate that the overstrength values for CBFs, proposed in seismic design codes, need to be modified.


F.r. Rofooei, M. R. Mirjalili, N. K. A. Attari,
Volume 10, Issue 4 (12-2012)
Abstract

The nonlinear static procedures (NSPs) proposed by design codes do not lead to reliable results especially for tall buildings.

They generally provide inconsistent estimates of inelastic seismic demands, especially for the top floors due to their inabilities in

considering the higher modes effects. In this paper, a new enhanced pushover procedure is proposed which is based on the

envelope of the structural responses resulting from two separate pushover analyses as a combination rule. Also, the suggested

pushover analyses are performed using a newly proposed modal load pattern, i.e., the Modal Spectra Combination (MSC), and

the ASCE41-06 required first mode load pattern. The MSC load pattern is consisted of a number of mode shapes combined with

appropriate weighting factors that depend on their modal participation factors, modal frequencies and design spectral values. A

number of 2-D steel moment resisting frame models with different number of stories are used to investigate the efficiency of the

proposed method. The inter-story drifts and the maximum plastic beam moment and curvature responses are used as a measure

to compare the results obtained from the nonlinear time-history analyses (NL-THA) and some other NSPs. The results obtained

through rigorous nonlinear dynamic analyses show that the application of the proposed method leads to acceptable results for

steel MRF systems in comparison to other available enhanced NSPs. The OpenSees program is used for numerical analysis.


H. Shakib, Gh. R. Atefatdoost,
Volume 12, Issue 1 (3-2014)
Abstract

An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro 1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified. The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this criterion.
A. Gholizad, P. Kamrani Moghaddam,
Volume 12, Issue 1 (3-2014)
Abstract

High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.
M. Bastami, M. Hajihasani,
Volume 12, Issue 1 (3-2014)
Abstract

Dynamic analysis of the seismic performance of power substation equipment is time-consuming, expensive and uses responses that are sensitive to ground motion. This research proposes a method to derive input waves for dynamic analysis in place of original records from seismic events in Iran. In this study, a power transformer, current transformer, circuit breaker and disconnect switch are analyzed using fifty records from the far-field and near-field earthquake ground motions. Statistical analysis is done on the maximum acceleration and displacement responses to obtain their pushover curves. Sinusoidal waves were created using the fundamental frequencies of the equipments and PGA of 0.1g through 0.5 g as the amplitude. The results are compared with the original records and show that the proposed input waves provide a reasonable fit for an extensive range of near-field and far-field ground motion results.
A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)
Abstract

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
C. Vieira,
Volume 12, Issue 1 (1-2014)
Abstract

This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system, for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to broaden the available design charts for steep reinforced slopes with non-horizontal backslopes
Guray Arslan, Melih Hacisalihoglu, Muzaffer Balci, Muzaffer Borekci,
Volume 12, Issue 2 (6-2014)
Abstract

The main cause of structural damage in buildings subjected to seismic actions is lateral drift. In almost all reinforced concrete (RC) structures, whether designed with walls or frames, it is likely to be the code drift limits that control the design drift. The design drift limits and their contribution to damage may be represented indirectly through the material strain limits. The aim of this study is to investigate the seismic design indicators of RC columns using finite element analyses (FEA). The results of FEA have been compared with the results of experimental studies selected from literature. It is observed that the lateral load-deflection curves of analyzed columns are in agreement with the experimental results. Based on these lateral load-deflection curves, the drift limits and the material strain limits, given by the codes as performance indicator, are compared. It is observed that the material strain limits are non-conservative as performance indicator of RC columns, compared to the drift limits.
Mohsen Shahrouzi, Amir Abbas Rahemi,
Volume 12, Issue 2 (6-2014)
Abstract

Well-known seismic design codes have offered an alternative equivalent static procedure for practical purposes instead of verifying design trials with complicated step-y-step dynamic analyses. Such a pattern of base-shear distribution over the building height will enforce its special stiffness and strength distribution which is not necessarily best suited for seismic design. The present study, utilizes a hybrid optimization procedure to seek for the best stiffness distribution in moment-resistant building frames. Both continuous loading pattern and discrete sizing variables are treated as optimization design variables. The continuous part is sampled by Harmony Search algorithm while a variant of Ant Colony Optimization is utilized for the discrete part. Further search intensification is provided by Branch and Bound technique. In order to verify the design candidates, static, modal and time-history analyses are applied regarding the code-specific design spectra. Treating a number of building moment-frame examples, such a hyper optimization resulted in new lateral loading patterns different from that used in common code practice. It was verified that designing the moment frames due to the proposed loading pattern can result in more uniform story drifts. In addition, locations of the first failure of columns were transmitted to the upper/less-critical stories of the frame. This achievement is important to avoid progressive collapse under earthquake excitation.
S. N. Moghaddas Tafreshi, T. Nouri. A,
Volume 12, Issue 2 (4-2014)
Abstract

This paper presents a simple solution based on the limit equilibrium of sliding soil wedge of reinforced backfill subjected to the horizontal acceleration in the framework of the pseudo-static method. In particular, contrary to most studies on the reinforced retaining wall, the solution proposed in this study, takes into account the effect of the uniform surcharge on the reinforced backfill soil and of its distance from the face of the wall. The results are investigated in dimensionless form of the maximum reinforcement required strength (Kmax), the dimension of the sliding wedge (Lc/H), and the factor of safety (FS). Compared to the reinforced backfill without surcharge, the presence of surcharge over the reinforced backfill and of its distance from the top of the backfill have significant effects on the stability of the system. For a fixed surcharge, a minimum distance of surcharge exists for which the presence of the surcharge does not affect the solution and the failure mechanism is that corresponding to the case of system with no surcharge. A detailed design example is included to illustrate usage of proposed procedures. Comparisons of the present results with available results show a favorable agreement.
S. Karimiyan, A. Moghadam, A. . Husseinzadeh Kashan, M. Karimiyan,
Volume 13, Issue 1 (3-2015)
Abstract

Plan irregularity causes local damages being concentrated in the irregular buildings. Progressive collapse is also the collapse of a large portion or whole building due to the local damages in the structure. The effect of irregularity on the progressive collapse potential of the buildings is investigated in this study. This is carried out by progressive collapse evaluation of the asymmetric mid rise and tall buildings in comparison with the symmetric ones via the nonlinear time history analyses in the 6, 9 and 12 story reinforced concrete buildings. The effect of increasing the mass eccentricity levels is investigated on the progressive collapse mechanism of the buildings with respect to the story drift behavior and the number of beam and column collapsed hinges criteria. According to the results, increasing the mass eccentricity levels causes earlier instability with lower number of the collapsed hinges which is necessary to fail the asymmetric buildings and at the same time mitigates the potential of progressive collapse. Moreover, the decreasing trend of the story drifts of the flexible edges is lower than those of the stiff edges and the mass centers and the amount of decrement in the story drifts of the stiff edges is approximately similar to those of the mass centers.
R. Tarinejad, S. Pirboudaghi,
Volume 13, Issue 2 (6-2015)
Abstract

It is well-known that dam-reservoir interaction has significant effects on the response of dams to the earthquakes. This phenomenon should be considered more exactly in the seismic design of dams with a rational and reliable dynamic analysis method. In this research, seismic analysis of the dam-reservoir is studied as a wave propagation problem by using Legendre Spectral element method (SEM). The special FEM and SEM codes are developed to carry out the seismic analysis of the dam-reservoir interaction system. The results of both SEM and FEM models are compared considering the accuracy and the time consumption of the analysis. Attractive spectral convergence of SEM is obtained either by increasing the degree of the polynomials in the reservoir or by the number of elements of dam. It is shown that all boundary conditions of the reservoir domain in the SEM are evaluated by the exact diagonal matrices. The SEM leads to the diagonal mass matrix for both dam and reservoir domains. The stiffness matrices obtained from the SEM are more sparse than the corresponding stiffness matrices in the FEM consequently the SEM needs a significant less time consumption of the analysis.


M.a. Rahgozar,
Volume 13, Issue 3 (12-2015)
Abstract

The interactive effects of adjacent buildings on their seismic performance are not frequently considered in seismic design. The adjacent buildings, however, are interrelated through the soil during seismic ground motions. The seismic energy is redistributed in the neighboring buildings through multiple structure-soil-structure interactions (SSSI). For example, in an area congested with many nearby tall and/or heavy buildings, accounting for the proximity effects of the adjacent buildings is very important. To solve the problem of SSSI successfully, researchers indicate two main research areas where need the most attention: 1) accounting for soil nonlinearity in an efficient way, and 2) spatial analysis of full 3D soil-structure models. In the present study, three-dimensional finite element models of tall buildings on different flexible foundation soils are used to evaluate the extent of cross interaction of adjacent buildings. Soil nonlinearity under cyclic loading is accounted for by Equivalent Linear Method (ELM) as to conduct large parametric studies in the field of seismic soil-structure interaction, the application of ELM is preferred over other alternatives (such as application of complicated constitutive soil models) due to the efficiency and reliability of its results. 15 and 30 story steel structures with pile foundations on two sandy and clayey sites are designed according to modern codes and then subjected to several actual earthquake records scaled to represent the seismicity of the building sites. Results show the cross interaction of adjacent buildings on flexible soils, depending on their proximity, increases dynamic displacements of buildings and reduces their base shears. 


A.r. Sattarifar, M.k. Sharbatdar, A. Dalvand,
Volume 13, Issue 4 (12-2015)
Abstract

In this paper, an experimental study has been conducted on strengthening of reinforced concrete (RC) connections by FRP sheets. The innovation of this research is using narrow grooves on critical regions of connection to increase the adherence of FRP sheets and prevent their early debonding. Therefore, four RC connections were made and tested under a constant axial load on the column and an increasing cyclic load on the beam. The first specimen, as the standard reference specimen, had close tie spacing in ductile regions of beam, column and panel zone based on seismic design provisions, and the second specimen, as the weak reference specimen did not have these conditions in all regions. Two other weak specimens were strengthened using two different strengthening patterns with FRP sheets one by ordinary surface preparation and the other with surface grooving method for installing FRP sheets on the connection. The results showed that ultimate load and ductility of the weak specimen compared to standard specimen decreased 25% and 17%, respectively. The shear failure and concrete crushing were prevented in the ductile regions of the beam and panel zone in both strengthened specimens. Also, it was observed that early debonding of FRP sheets was prevented in the strengthened connection with grooving pattern and so had desirable ductility and bearing capacity similar to the standard specimen.


Guray Arslan, Muzaffer Borekci, Muzaffer Balci, Melih Hacisalihoglu,
Volume 14, Issue 3 (4-2016)
Abstract

The contribution of concrete to inelastic deformation capacity and shear strength of reinforced concrete (RC) columns failing in shear has been investigated extensively by various researchers. Although RC members are designed to have shear strengths much greater than their flexural strengths to ensure flexural failure according to the current codes, shear degradation of RC columns failing in flexure has not been studied widely. The aim of this study is to investigate the shear degradation of RC columns using finite element analyses (FEA). The results of FEA are compared with the results of experimental studies selected from literature, and it is observed that the lateral load-deflection curves of analysed columns are compatible with the experimental results. Twenty-six RC columns were analysed under monotonically increasing loads to determine the concrete contribution to shear strength. The results of analyses indicate that increasing the ratio of shear to flexural strength reduces the concrete contribution to shear strength of the columns.


Jalal Akbari , Mohammad Sadegh Ayubirad ,
Volume 15, Issue 2 (3-2017)
Abstract

From practical point of view, optimum design of structures under time variable loadings faces many challenges. Issues such as time-dependent behavior of constraints and the computational costs of the gradients could be mentioned. In order to prevent such difficulties, in this paper, response spectrum method has been utilized instead of applying direct time history method. Additionally, seismic design of structures is defined as a design for a specific response spectra not for an individual acceleration time history. Furthermore, here, in order to guarantee the global optimal designs, the obtained results from gradient-based method are compared with those from the discrete optimization technique (Genetic algorithm). As well, the P-Delta effects are considered in a seismic analysis. In addition, many practical constraints according to the Iranian national building code (NBC) are included in the optimization problem. The developed MATLAB based computer program is utilized to solve the numerical examples of low, intermediate and relatively high-rise braced and un-braced steel frames.


Dr. Abazar Asghari, Mr. Behnam Azimi Zarnagh,
Volume 15, Issue 5 (7-2017)
Abstract

For years, coupling shear walls have been used in  the mid to high-rise buildings as a part of lateral load- resisting system mostly, because of their ability to control the displacement of structures, Recently by changing the design codes from strength based design to performance based  design, nonlinear behavior of coupled walls became important for practical engineers, so that many researchers  are looking for ways to improve and also predict the behavior of coupled walls under severe earthquakes. This paper  presents  the results of   linear,  nonlinear static ( pushover)  and  nonlinear inelastic time-history analysis  of a 10-story  two- dimensional coupling shear wall (CSW) which is perforated with 3 different patterns which are taken from considering  the S22 stress of shell elements used for modeling shear walls,  nonlinear static analysis results confirm that perforation can increase the response modification  factor of coupled walls up to 33 percent and also the results of  linear analysis and design indicate that perforation can reduce the amount of reinforcement of coupling beams and other frame's  structural components. Also results of nonlinear inelastic time history  analysis confirm that by using perforation patterns the base shear- roof displacement hysteretic response get better and the  systems with perforation patterns can absorb more energy under severe earthquakes.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb