Search published articles


Showing 2 results for Scale of Fluctuation

A. Eslami Kenarsari, R. Jamshidi Chenari, A. Eslami,
Volume 11, Issue 1 (5-2013)
Abstract

Among the different ways of in-situ soil investigation, cone penetration test data are selected to evaluate the spatial variability

of geomaterials and the scale of fluctuations is chosen to evaluate the correlation structure of CPT data. In this regard six case

studies in sandy materials from Australia, U.S.A. and Iraq are selected. Various techniques for the calculation of the scale of

fluctuation of geotechnical parameters are suggested in literature e.g. VXP, SAI, AMF, BLM and VRF without any preference or

privilege for any specific procedure. In order to isolate the stochastic portion of cone tip resistance, deterministic trend was first

removed by regression analysis. This study suggests that quadratic trend removal is more suitable for selected CPT data

soundings. The closeness of the estimated scale of fluctuation using different approaches is assessed too. Mean value of the scale

of fluctuation by five established methods ranges between 0.44 to 1.52 meter for six different cases and the coefficient of

variation for the scale of fluctuation calculated by these methods varies between 12 to 27 % showing that available established

methods produce almost compatible and comparable results.


R. Jamshidi Chenari, P. Pishgah ,
Volume 12, Issue 2 (4-2014)
Abstract

In this technical note, a methodology is introduced for reliability calculation of consolidation settlement based on cone penetration test (CPT) data. The present study considers inherent soil variability which influences consolidation settlements results. To proceed reliability analysis, the measured data of a sample corrected cone tip resistance (􀝍􀯧) is detrended using a quadratic trend and the residuals are assumed to be lognormally distributed random field. Realizations of 􀝍􀯧 is generated by using spatial variability of residuals including standard deviation and the scale of fluctuation. The quadratic trend and the generated residuals are then combined to correlate shear and bulk modulus as input consolidation properties for coupled analysis and subsequently consolidation settlement was calculated by using finite difference method adopted in Monte Carlo simulations. The results of reliability analysis are presented describing the range of possible settlements by considering characteristics of uncertainties involved at the particular site. Number of realizations rendering settlements smaller than the allowable settlement must be such that guarantee proper performance or acceptable reliability index.

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb