Search published articles


Showing 3 results for Repeatability

A. H. Eghbali, K. Fakharian,
Volume 12, Issue 1 (1-2014)
Abstract

Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.
Dr M. Khodaparast, Dr A.m. Rajabi, Mr. M. Mohammadi,
Volume 13, Issue 2 (6-2015)
Abstract

The Dynamic Probe is an effective tool used in site investigation. It is more economic than the use of direct drilling, particularly in explorations with moderate depth. This paper presents an experimental study to investigate the capability of using dynamic probing to evaluate the shear strength and compaction percent of fine soil. A series of dynamic probe tests were carried out at 6 different sites in the Khozestan, Hormozgan and Qom provinces in the central and southern regions of Iran. The repeatability of the results is considered and new empirical equations relating the dynamic point resistance to undrained shear strength and compaction percent are proposed. For undrained shear strength evaluation of fine soils, i.e. clay and silty clay soils, a reliable site-specific correlation between qd and Cu can be developed when considering the correlation between log qd and log Cu. Also compaction present can be evaluated by qd. These equations can be developed to provide site-specific relationships based upon geotechnical data at each new location. Using this approach an estimation of the undrained shear strength Cu and compaction percent CP can be determined from dynamic probe tests with acceptable accuracy. The present paper also encourages the wider application of dynamic probing for site investigation in fine soils.
Dr. Mohammad Khasawneh,
Volume 15, Issue 7 (10-2017)
Abstract

During the entire life cycle of a pavement, highway agencies are expected to maintain adequate surface frictional properties to facilitate traction between car tires and pavement surface. Traditionally the repair method for a friction-deficient pavement surface is the application of a new surfacing layer. The monitoring and remedying practice is important however, it is a passive approach toward the problem. A more proactive approach would be to test the hot mix asphalt in the laboratory during its initial mix design stage to ensure that aggregate combinations used in the asphalt pavement will provide adequate friction over the life of the pavement. Toward this objective the polishing behavior of laboratory-prepared HMA specimens made of eight different job mix formulas has been studied in terms of friction values. In addition, a robust statistical analysis of the obtained surface friction values has also been carried out in an attempt to verify the success in developing this new asphalt polisher that is used to simulate the tire-pavement interaction. Furthermore, polishing behavior (i.e., polishing trend, rate of friction loss and absolute and percent values of decrease) were all fully investigated to capture surface frictional deterioration of HMA specimens. In conclusion, the new asphalt polisher showed a good degree of repeatability. Additionally, it has been concluded that the decrease in polish number is maximum during the first hour of polishing. With the passage of time the drop in friction decreases and stabilizes.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb