Search published articles


Showing 3 results for Polypropylene Fibers

C. Gümüşer, A. Şenol,
Volume 12, Issue 2 (4-2014)
Abstract

The total coal and lignite consumption of the thermic power plants in Turkey is approximately 55 million tons and nearly 15 million tons of fly ash is produced. The remarkable increase in the production of fly ash and its disposal in an environmentally friendly manner is increasingly becoming a matter of global concern. Studies for the utilization of fly ash in Turkey are necessary to reduce environmental problems and avoid economical loss caused by the disposal of fly ash. Efforts are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect of these efforts. An experimental program was undertaken to investigate the effects of Multifilament (MF19average) and Fibrillated (F19average) polypropylene fiber on the compaction and strength behavior of CH class soil with fly ash in different proportions. The soil samples were prepared at three different percentages of fiber content (i.e. 0.5%, 1% and 1.5% by weight of soil) and two different percentages of fly ash (i.e. 10% and 15% by weight of soil). A series of tests were prepared in optimum moisture content and laboratory unconfined compression strength tests, compaction tests and Atterberg limits test were carried out. The fiber inclusions increased the strength of the fly ash specimens and changed their brittle behavior into ductile behavior.
M.m. Kamal, M.a. Safan, Z.a. Etman, M.a. Abd-Elbaki,
Volume 13, Issue 4 (12-2015)
Abstract

The current research intends to study the possibility of producing fiber recycled self-compacting concrete (FRSCC) using demolitions as a coarse aggregate (crushed red brick and crushed ceramic). Steel fibers were used in recycled self-compacting concrete (RSCC) to improve fresh and hardened properties of this type of concrete. Thirty nine concrete mixes were prepared to achieve the aim proposed in this paper. Steel fiber volume fraction varied from 0 to 2.0% by the volume of concrete with aspect ratio 65. The fresh properties of FRSCC were evaluated using slump flow, J-ring and V-funnel tests. Compressive strength, tensile strength, flexural strength and density tests were performed in order to investigate mechanical properties. The optimum volume fraction of steel fibers was 0.25% and 1.0% for the mixes contained crushed red brick and ceramic as a coarse aggregate respectively. At optimum content of steel fibers, the compressive strength for the RSCC mixes with steel fibers improved by 11.3% and 31.8% for the mixes with crushed ceramic and crushed red brick, respectively with respect to control mix. Also the tensile strength and the flexural strength for the mixes were improved


Mahmood Reza Abdi, Hamed Mirzaeifar,
Volume 14, Issue 4 (6-2016)
Abstract

Abstract To meet construction demands, reinforcement and stabilization methods have been widely used to improve properties and mechanical behavior of clays. Although cement stabilization increases soil strength, at the same time reduces ductility which is of paramount importance in roads, landfill covers, etc. In current study, kaolinite was stabilized with 1, 3 and 5% cement and mixed with 0.05, 0.15, 0.25 and 0.35% polypropylene fibers to increase ductility. Samples were cured at 35°C for 1, 7 and 28 days and subjected to unconfined compression tests. Results showed that inclusion of discrete fibers to uncemented and cemented kaolinite reduced stiffness and the loss of post-peak strength and changed brittle behavior of cemented samples to a more ductile behavior. Cement and fiber contents as well as curing period were found to be the most influential factors and fiber – soil interaction was influenced by binding materials.



Page 1 from 1     

© 2018 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb