Search published articles

Showing 2 results for Mr Damper

A. H. Molavi-Tabrizi, F. Khoshnoudian,
Volume 10, Issue 3 (9-2012)

The application of fuzzy algorithms in the response control of a base isolated building with MR dampers is investigated in this

paper. Most of the previous researches in this field have been focused on fuzzy algorithms with linear membership function

however in the current study the membership functions are assumed to be Gaussian and their effectiveness is studied. For this

purpose, an eight-story building with regularity in plan and height is considered. The adopted base isolation system includes

linear bearings and control devices for improving the behavior of isolated structure under near field ground motions. MR

dampers are used to reduce base displacements and have the capacity of 1000 kN with the maximum applied voltage of 10 V. In

order to verify the control procedure and analyzing the structure, a simulation procedure is developed. This procedure performs

linear analysis of the structure in presence or in absence of the base isolation system. Moreover, the simulation procedure is able

to appropriately determine the MR damper voltage using fuzzy logic algorithms and then analyzing the whole system too. Finally,

seven near-field earthquake records are chosen in order to study the structure responses under these records and the obtained

results demonstrate the accuracy of proposed control procedure

H. Zhou, L.m. Sun,
Volume 11, Issue 3 (9-2013)

Damping of a full-scale cable with a pair of passive–on magnetorheological (MR) dampers was tested. A cable of 215.58m long with the first mode frequency of 0.658Hz was tensioned horizontally in cable prefabrication factory. Two MR dampers were attached to the cable in an angle in the plane perpendicularly to the cable axis in 5m length from the cable anchorage. The applied voltage level was 0V, 3V, 6V and 9V. The cable was excited manually to a certain amplitude level for the first three modes of vertical vibration. The free decay curves of the cable were then recorded. The damping of the cable was calculated from the measured anti-node vibration amplitude. The damping of the free cable was also tested for reference. It was found that the damping of the cable is still low when MR dampers were no voltage strengthened. However, the damping of the cable increased greatly for the other with MR damper cases compared to free cable. Further study showed that the damping of the cable with MR dampers were strongly depended on applied voltage level and vibration amplitude. There is an optimal damping value when MR damper is voltage strengthened. The dependence of the optimum damping on applied voltage level, vibration amplitude and vibration mode was further analyzed.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb