Search published articles


Showing 211 results for High

Afshar A., Marino M.a., Jalali M.r.,
Volume 1, Issue 1 (9-2003)
Abstract

The reliable operation of spillways, in emergency as well as normal conditions, is one of the vital components in dam safety. Free or uncontrolled overflow spillways are the most reliable choice however. They usually impose higher construction cost and /or results in wasting a considerable amount of water or live capacity of the reservoirs. Employing fuse gates might be a way of reconciling dam safety with maximized storage capacity. The operation of the system can be controlled to within a few centimeters, and the entire installation is not lost for floods less than the maximum design flood. The installation offers more or less the same level of safety as ungated spillways, but avoids their inherent storage capacity loss. Optimum design of fuse gates in particular installation calls for a mathematical model. The model developed in this work includes structural, hydraulics and operational constraints while maximizing the expected cost over the useful life of the project. Accounting for the lost benefit (i.e., water lost as a result of gate tilting) has an influenced effect on the optimum design. To test the performance of the model, data from Zarineh Rud dam in Iran has been used and its result is compared with a direct search technique. The model is capable of helping the design engineer to select the best alternative considering different types of constraints.
A.r. Khaloo, Molaee A.,
Volume 1, Issue 2 (12-2003)
Abstract

An experimental program was carried out to investigate the behavior of steel, fiber reinforced concrete (SFRC) under abrasion and cycles of freeze and them. Compression and flexural tests were also performed in order to reach a comprehensive conclusion of the response. In total, over 200 specimens were tested The test variables included two concrete strength., (i. e., 28 MPa as Normal Strength (NSFRC) and 42 MPa as Medium Strength (MSFRC)), four volumetric percentage of fibers (i.e., 0%, 0,5%, 1.0% and 1.5%) and two fiber lengths (i.e.. 25mm and 35rnrn).Cube specimens were tested according to ASTM C6661n-ocedrrre B using 100 cycles of freeze and thaw. The Los Angeles test method for testing aggregate was used to evaluate the abrasion resistance of SFRC.Test results of1VSFRCptesertted improvements up to 39% and 32 % in cylindrical and cubic compressive strength, respectively. and 88�o in modulus of rupture, 57% in resistance against abrasion based oil weight loss and 40% against compressive strength reduction due to freeze and thaw cycles. The corresponding improvements for MSFRC were 18%, 16%, 48%, 53% and 46% respectively.Increase in cocncrete strength from 28 Ala to 42 MPa provided higher freeze and thaw and abrasion resistance than addition of 1.5% of steel fibers to the normal strength concrete matrix.
Pakbaz M.c., Ahmadi C.,
Volume 1, Issue 2 (12-2003)
Abstract

This research include, more than 400 erosion tests performed on coarse and fine grain suspension materials. The purpose of tests was to determine erosion characteristics of mixtures of different materials. Samples of the .same constituents in different groups were cured tit two different setting time of // and 16 !tours before they were subjected to the constant hydraulic heads of 20 and 40 cm for ct time period of 30 urinates. The amount of erosion was measured as the weight loss of the samples offer the test. /n general the lower setting tune and the higher hydraulic head for a large group of samples showed higher erosion. For uniform sand samples when the cement content was 60-70 % the percentage of erosion (PE) was below 2. For the mixture of sand-cement, with the clay content below, 20% the percentage of erosion was below 2 and it increased to 15.5 for the clan, content of 58dc. Die addition of bentonite in the soil-cement mixtures in general did not affect the erosion.
Shooshpasha I.,
Volume 1, Issue 2 (12-2003)
Abstract

This study was designed to investigate the local volume changes induced by swelling pressure in unsaturated stand-bentonite bused buffer material. A laboratory mixture of sodium bentonite (lilt/ well graded silica stool in equal proportion by do weight was used for moisture floss experiments in both ambient and elevated temperatures. Experimental results have shown that tit high water content locations within the tested specimens, the density was reduced by .3.57% from its initial values clue to swelling. The swelling pressure was calculated by 4 different models as a function of distance. The calculated results have indicated that the density distribution within the .specimen is affected by swelling potential distribution. The calculated swelling pressure values van as u function of water content, reaching I MPa at the source of water intake, i.e., at high water content :.one, and 2 MPa cot the heater .side, i.e., cot low water content .one.
Mazloom M., Ramezanian Pour A.a.,
Volume 2, Issue 1 (3-2004)
Abstract

This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels.
Kheyr Aldin A., Mortezaei A.r.,
Volume 2, Issue 1 (3-2004)
Abstract

Structural walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. The analytical models used in this paper are developed to study the push-over response of T-shaped reinforced concrete walls andinvestigate the influence of the flange walls on laterally loaded walls and nonlinear behavior of shear walls, namely strength, ductility and failure mechanisms. A layered nonlinear finite element method is used to study the behavior of T-shaped and rectangular (barbell) shear walls. This paper introduces a computer program to practically study three-dimensional characteristics of reinforced concrete wall response by utilizing layered modeling. The program is first verified bysimulated and reported experimental response of 3-D reinforced concrete shear walls. Subsequently, a study considering eighteen analytical test specimens of T-shaped and barbell shear walls is carried out. Finally, based on analytical results, a new equation for minimum ratio of shear wall area to floor-plan area is proposed.
Khalou A.r., Ghara Chour Lou A.,
Volume 3, Issue 1 (3-2005)
Abstract

This paper presents the results of analytical studies concerning the flexuralstrengthening of reinforced concrete beams by external bonding of high-strength lightweightcarbon fiber reinforced plastic (CFRP) plates to tension face of the beam. Three groups of beamswere tested analytically and compared with existing experimental results. Results of the numericalanalyses showed that, although addition of CFRP plates to the tension face of the beam increasesthe strength, it decreases the beam ductility. Finite element modeling of fifteen different beams in aparametric study indicates that steel area ratio, CFRP thickness, CFRP ultimate strength andelastic modulus considerably influence the level of strengthening and ductility.
Sabouri Ghomi S., Kharazi M.h.k., Asghari A., Javidan P.,
Volume 3, Issue 1 (3-2005)
Abstract

Design and construction of efficient and economic Reinforced Concrete (R.C.) Hyperbolic Cooling Towers have driven the engineers toward the design of tall and thin-shell towers which have considerable high slenderness aspect ratio. Consequently, the shell of R.C. Cooling Towers with relative high slenderness aspect ratio is extremely prone to buckling instability due to wind loading. To increase the structural stability or buckling safety factor, one economic approach is to design and construct stiffening rings for the R.C. Hyperbolic Cooling Towers. Despite the research previously performed to determine the effect of stiffening rings on the buckling behavior of the R.C. Hyperbolic Cooling Towers, information resulting in maximum buckling stability is absent considering the optimized utilization of the quantity and dimension as well as the location of this type of stiffeners. In this paper, not only the effect of the stiffening rings on the buckling stability of the R.C. Cooling Tower is studied but also the optimized location,quantity and dimension of the stiffening rings are carried out for a sample RC Cooling Tower. The dimensions of the selected sample cooling tower are in average typical dimensions which are used in the current practice. In this study, finite element (F. E.) analyses has been carried out to define the buckling modes and resistance of this tower due to wind loading for different number of stiffening ring configurations. Based on the conducted buckling analysis, the optimized number, location and dimension of the stiffening rings that maximizes the tower.s buckling stability are defined and the methodology to achieve this information is discussed in this paper.
Mahmoud Saffarzadeh, Maghsoud Pooryari,
Volume 3, Issue 2 (6-2005)
Abstract

This paper specifies the relationship among various factors contributing to road accidents including geometrical design characteristics, environmental and traffic specifications, by multiple regression analysis. The main objective of this paper is identification of problems associated with the safety issue of road networks by application of accident prediction models. Data from previous accidents were used to develop the models. Results of this study showed that the rate of road accidents is to a large extent dependent on the rate of traffic volume. Type of road and land-use are other important factors influencing the number and intensity of accidents. The mountainous roads in this respect require special attention regarding their safety factors. The quantitative rate of road safety upgrading has also been specified by adding traffic lanes in road networks.
Mohammad C. Pakbaz, M. Lorestani,
Volume 3, Issue 2 (6-2005)
Abstract

The main purpose of this research is evaluation of effect of chemicals on permeability of sand- bentonite mixtures. The coefficients of permeability of sand- bentonite mixtures in water, solutions of sodium and calcium chlorides, sodium hydroxide, acetic acid, methanol and carbon tetrachloride were calculated using parameters obtained in 1- D consolidation test and Terzaghi’s theory. At each void ratio permeability of samples in water is the lowest and that for carbon tetrachloride is the highest. For all fluids the permeability index Ck is decreased as the percentage of sand is increased. The largest Ck belongs to the samples tested in water and the smallest Ck belongs to the samples tested in carbon tetrachloride.
Saleh Zadeh H., Procter D.c., Merrifield C.m.,
Volume 3, Issue 3 (9-2005)
Abstract

The unique behaviour of carbonate materials under shear loading has stimulated in investigating of their geological and engineering properties.Carbonate soils composed of calcium or other carbonates and most abundant in tropical marine environments are of interest from geotechnical view, especially for offshore engineers engaged with Fossil-based fuel exploitation. This was initiated in the early 1960's, when the first offshore borings in the Persian Gulf identified layers of calcarenite and thick layers of sand containing visible shell fragments.For the purpose of exploiting gas and oil resources in hot and temperate climates (e.g. Persian Gulf) off-shore structures have been placed on carbonate soils. The carbonate sediments are high crushable compared with low crushable sediments such as quartzic soils.To examine the crushability of these problematic sediments a series of monotonic compression, extension and post-cyclic triaxial tests under different densities and confining pressures was carried out to study the crushing behaviour of "Rock" carbonate sand obtained from Cornwall, England.It was shown that crushing coefficient decreases with increasing in maximum principal effective stress ratio for both loose and dense states. It seems that for skeletal carbonate sand maximum and minimum dry densities will be changed during shearing loading. In other words, even though the sample has experienced an increase in density, it may also have experienced a reduction in relative density.
Mahin Roosta R., Sadaghyani M.h., Pak A.,
Volume 3, Issue 3 (9-2005)
Abstract

Existence of discontinuities causes higher deformability and lower strength in rock masses. Thus joints can change the rock mass behaviour due to the applied loads. For this reason properties and orientation of the joint sets have a great effect on the stability of rock slopes. In this paper, after introducing some numerical methods for evaluating the factor of safety for the stability of slopes, stability of jointed rock slopes in the plane strain condition is investigated with the strength reduction technique this method is modified and applied in the multilaminate framework. First of all, stability of one homogeneous rock slope is investigated and compared with the limit equilibrium method. Then stability of a layered rock slope is analyzed with some modifications in the strength reduction technique. Effects of orientation, tensile strength and dilation of layered joint sets on the factor of safety and location of the sliding block are explained.
Khaloo R., Sharifian M.,
Volume 3, Issue 3 (9-2005)
Abstract

Results of an experimental investigation performed to evaluate the effect of various concrete strength levels on behavior of lightweight concrete (LWC) under pure torsion are reported.The principle variable of the testing program was compressive strength of concrete (�'c) which ranged between 6.9 and 81.4 MPa. Ten mixture proportions were utilized for LWC of 1500 to 2050 kg/m3 unit weight. In total, sixty four (thirty two pairs) rectangular specimens with 100x 200 mm cross-section were tested. Ultimate torsion strength of LWC increases as uniaxial compressive strength increases however the increase rate reduces for high levels of concrete strengths. The test results are compared with predictions of elastic and plastic theories for torsion and the ACI Code. The Code underestimates the cracking torque of LWC under pure torsion. A regression equation incorporating test results is higher than the ACI equation prediction by a factor of 1.12.
A. Afshar, H. Abbasi, M. R. Jalali,
Volume 4, Issue 1 (3-2006)
Abstract

Water conveyance systems (WCSs) are costly infrastructures in terms of materials, construction, maintenance and energy requirements. Much attention has been given to the application of optimization methods to minimize the costs associated with such infrastructures. Historically, traditional optimization techniques have been used, such as linear and non-linear programming. In this paper, application of ant colony optimization (ACO) algorithm in the design of a water supply pipeline system is presented. Ant colony optimization algorithms, which are based on foraging behavior of ants, is successfully applied to optimize this problem. A computer model is developed that can receive pumping stations at any possible or predefined locations and optimize their specifications. As any direct search method, the mothel is highly sensitive to setup parameters, hence fine tuning of the parameters is recommended.
A. Shamsai, R. Soleymanzadeh,
Volume 4, Issue 1 (3-2006)
Abstract

Flow regime in dam's bottom outlet is divided in pressurized flow and free surface flow by the gate located for discharge control. Down stream tunnel involves high velocity Multi component Air –water flow studied by mathematical model. In this research work, we used Finite volume mixture two phase flow model. Because of high Reynolds number, standard two equations k-e turbulence model was used. Model was verified by backward-facing step flow and results have been compared with experiments founded by Durst and Schmitt. Air demand ratio has been determined as function of Froude number at contracted section. Flow patterns have been compared at two categories of slug & stratified flows, Air mean concentration profile has been obtained at down stream tunnel. Comparison of flow pattern at two case with and without of aeration was investigated. Pressure drop behind of the gate and formation of vortex flow after the gate section have been discussed. Measurement of flow discharge and determination of contraction coefficient of the gate was outlined.
H. Salehzadeh, D.c. Procter, C.m. Merrifield,
Volume 4, Issue 1 (3-2006)
Abstract

Carbonate materials are mostly found in tropical areas, where exploiting gas and oil resources are of high concern. Their unique behavior under shear loading first was recognised during oil resources investigations in the Persian Gulf. Off-shore structures have been placed on carbonate soils which are highly crushable.During storms cyclic loading imposes on the bases of structures lied down on seabed. Cyclic loading, therefore, may trigger liquefaction phenomenon which leads to soil collapse and a catostrophic event. Therefore, stability of these expensive structures need to be investigated. To this aim carbonate sand in medium dense to medium dense state was considered and its response under varied cyclic shear stress ratio was studied.
H. Behbahani, S.m. Elahi,
Volume 4, Issue 1 (3-2006)
Abstract

To properly plan for construction, repair, maintenance, and reconstruction of highways the minimum acceptable roadway condition is needed information. This, along with other pavement management tools, will help select the most desirable roadway alternatives. In this research the minimum acceptable conditions are developed based on an opinion survey of non-technical but high-level decision makers. Roadway roughness, expressed as international roughness index (IRI), is used as the measurement criteria. Because IRI is a widely known, acceptable, and a uniformly measurable index, it is used for the purpose of this research. The minimum IRI values developed here will help managers, planners, and engineers in prioritizing their plans and projects. Iran has a central planning system, hence having a minimum acceptable IRI will help in producing homogeneity in decision making. A questionnaire is sent to top level and influential managementlevel officials who have a decisive input in highway matters. The officials are asked to choose the minimum acceptable service level of different types of roadways and classifications. Naturally, roadways with higher levels of importance would require higher service levels. The answers to the survey questionnaires are investigated to determine a preferred minimum acceptable roadway condition. The IRI is computed using a mechanical device enabling a more uniform data collection. The IRI was first proposed by The World Bank as a standard roughness statistic. Extensive research has proven that the IRI can be related to pavement condition. The result of the opinion survey is investigated to determine the minimum levels acceptable for each category. The responses show distinct preference patterns for most of the roadway types. Survey results are investigated by plotting and analyzing them. Based on road user’s perception of roadway condition using guidelines from AASHTO, the Corp of Engineers, and related research work. The appropriate IRI limits and ranges are determined for Iran’s highways. These values are adjusted to obtain final values for Iran. The result, shown in a table, gives upper and lower IRI values accepted and recommended for Iran’s highways. The result of this research work is specifically useful in developing specifications for new pavement design, accepting new pavement from contractors, pavement management, highway planning, and in roadway life cycle cost analysis decision making. The results are subject to refinement over time.
H. Moharrami, S.a. Alavinasab,
Volume 4, Issue 2 (6-2006)
Abstract

In this paper a general procedure for automated minimum weight design of twodimensional steel frames under seismic loading is proposed. The proposal comprises two parts: a) Formulation of automated design of frames under seismic loading and b) introduction of an optimization engine and the improvement made on it for the solution of optimal design. Seismic loading, that depends on dynamic characteristics of structure, is determined using "Equivalent static loading" scheme. The design automation is sought via formulation of the design problem in the form of a standard optimization problem in which the design requirements is treated as optimization constraints. The Optimality Criteria (OC) method has been modified/improved and used for solution of the optimization problem. The improvement in (OC) algorithm relates to simultaneous identification of active set of constraints and calculation of corresponding Lagrange multipliers. The modification has resulted in rapid convergence of the algorithm, which is promising for highly nonlinear optimal design problems. Two examples have been provided to show the procedure of automated design and optimization of seismic-resistant frames and the performance and capability of the proposed algorithm.
M.h. Baziar, R. Ziaie_moayed,
Volume 4, Issue 2 (6-2006)
Abstract

This paper highlights the effect of silt content on cone tip resistance in loose silty sand. In this study, twenty-seven cone penetration tests are performed in saturated silty sand samples with several different silt contents ranging from 10 to 50 percent. The samples are consolidated at three overburden stresses including 100, 200 and 300 kPa. It is shown that, as the silt content increases, the cone tip resistance decreases. In high percent of silt (30-50%), the cone tip resistance decreases more gently compared with low percent of silt (0-30%). It is also concluded that the method proposed by Olsen (1997) for stress normalization of cone tip resistance compared with the Robertson and Wride (1998) method has better agreement with the obtained results. To evaluate liquefaction potential of loose silty sand, the method presented by Robertson and Wride (1998) is also studied. The results showed that the use of Robertson and Wride (1998) method to estimate the fine content from CPT data causes some uncertainty especially for high silt content (FC>30%).
M. Naderi,
Volume 4, Issue 2 (6-2006)
Abstract

This paper introduces an innovative partially destructive method, called “Twist-off”, for the assessment of in situ concrete strength. In this method a 40mm diameter metal probe is bonded to a concrete surface by means of a high strength epoxy resin adhesive. To measure the concrete compressive strength, a torque is applied using an ordinary torque-meter and the maximum shear stress at failure is used to estimate the cube compressive strength by means of a calibration graph. The relationship between the results of this new method and compressive strengths of concrete cores is also presented in this paper. The average coefficient of variation of the results of this method was seen to be of the order of 8 percent and the correlation coefficients of its comparative results with concrete cube and core compressive strengths were found to be 0.97 and 0.90 respectively. In order to assess the performance of this method on site, tests were undertaken on a number of buildings. Although the method was found to perform well but with some of the structures tested, the differences between the strengths of sample cubes and estimated in situ compressive strength of concrete were seen to be significant.

Page 1 from 11    
First
Previous
1
...
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb