Search published articles

Showing 3 results for Force Method

H. Rahami, A. Kaveh, M. Ardalan Asl, S. R. Mirghaderi,
Volume 11, Issue 4 (12-2013)

In the process of structural analysis we often come to structures that can be analyzed with simpler methods than the standard approaches. For these structures, known as regular structures, the matrices involved are in canonical forms and their eigen-solution can be performed in a simple manner. However, by adding or removing some elements or nodes, such methods cannot be utilized. Here, an efficient method is developed for the analysis of irregular structures in the form a regular structure with additional or missing nodes or with additional or missing supports. In this method, the saving in computational time is considerable. The power of the method becomes more apparent when the analysis should be repeated very many times as it is the case in optimal design or non-linear analysis.
A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
A. Kaveh, M.s. Massoudi ,
Volume 12, Issue 2 (6-2014)

Formation of a suitable null basis is the main problem of finite elements analysis via force method. For an optimal analysis, the selected null basis matrices should be sparse and banded corresponding to sparse, banded and well-conditioned flexibility matrices. In this paper, an efficient method is developed for the formation of the null bases of finite element models (FEMs) consisting of tetrahedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems (SESs) on these subgraphs. Two examples are presented to illustrate the simplicity and effectiveness of the presented graph-algebraic method.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb