Search published articles


Showing 26 results for Fem

F. Eftekharzadeh,
Volume 2, Issue 3 (9-2004)
Abstract

According to experiences, zones of weaknesses, joint systems and sliding surfaces in rock masses, have a great effect on the deformation behavior of tunnel cross section and the stress development in the shotcrete cover. The loosening and detaching of rock due to roof deformations in turn can take progressive dimensions and lead to roof fall and in extreme case cave to the surface. In this study, the effect of weakness zones on increasing roof deformations is demonstrated and the radius of influence of such weaknesses is determined using a FE- program for 3- dimensional continuum. Furthermore it is shown that the thickness of such disturbances does not significantly affect the development of deformations i.e. if the stiffness conditions remain constant. Also the viscous material causes greater deformations than the elastic one. Finally the study indicates that tangential stresses in the lining are also increased by weakness zones.
Ghodrati Amiri G., Sedighi S.,
Volume 2, Issue 4 (12-2004)
Abstract

In the past decade design procedure changed to �performance-based design� from�force-based design�, by this mean many researchers focused on nonlinear static analysis (NSA)and the procedure named �PUSHOVER�. Advantages of this method are defining the inelasticbehavior of structure without nonlinear dynamic analysis (NDA) effort and also defining plastichinges formation in critical elements, and the order of formed plastic hinges. In spite of these goodadvantages NSA is limited to short and planar structures and application of that in tall andtorsionaly asymmetric structures may yield unreliable results.In this study reliability of NSA is investigated by performing both nonlinear static and dynamicanalysis on six 2D moment resisting concrete frames. Non linear dynamic analysis has been doneby the suggested method in FEMA356 guideline called �Target Displacement Method�. A groupof 4 different lateral increasing loads were used in pushover analysis and 3 different groundmotions were applied in NDA. Results indicate that same responses can be obtained by performingNSA, but errors will be increased by frames height increment.
Sadeghi J.m., Youldashkhan M.,
Volume 3, Issue 1 (3-2005)
Abstract

In this paper, the main factors in the analysis of the railway concrete sleepers areinvestigated and new recommendations are made in order to improve the accuracy of the currentpractices in analysis of the railway track system. First, a comprehensive literature survey isconducted, then, FEM models for a railway track system are developed and used to discuss andevaluate the assumptions commonly used in the analysis of the railway track system. The analysisfactors investigated include stress distribution under a concrete sleeper, rail-seat load, anddynamic coefficient factor. Finally, recommendations and needs for continuation of the researchare presented.
A.r. Khoei, S. Yadegari, M. Anahid,
Volume 4, Issue 3 (9-2006)
Abstract

In this paper, a higher order continuum model is presented based on the Cosserat continuum theory in 3D numerical simulation of shear band localization. As the classical continuum models suffer from the pathological mesh-dependence in strain softening models, the governing equations are regularized by adding the rotational degrees-of-freedom to conventional degrees-of-freedom. The fundamental relations in three-dimensional Cosserat continuum are presented and the internal length parameters are introduced in the elasto-plastic constitutive matrix to control the shear bandwidth. Finally, the efficiency of proposed model and computational algorithm is demonstrated by a 3D strip in tensile. A comparison is performed between the classical and Cosserat theories and the effect of internal length parameter is demonstrated. Clearly, a finite shear bandwidth is achieved and the load-displacement curves are uniformly converged upon different mesh sizes.
F. R. Rofooei, N. K. Attari, A. Rasekh, A.h. Shodja,
Volume 4, Issue 3 (9-2006)
Abstract

Pushover analysis is a simplified nonlinear analysis technique that can be used to estimate the dynamic demands imposed on a structure under earthquake excitations. One of the first steps taken in this approximate solution is to assess the maximum roof displacement, known as target displacement, using the base shear versus roof displacement diagram. That could be done by the so-called dynamic pushover analysis, i.e. a dynamic time history analysis of an equivalent single degree of freedom model of the original system, as well as other available approximate static methods. In this paper, a number of load patterns, including a new approach, are considered to construct the related pushover curves. In a so-called dynamic pushover analysis, the bi-linear and tri-linear approximations of these pushover curves were used to assess the target displacements by performing dynamic nonlinear time history analyses. The results obtained for five different special moment resisting steel frames, using five earthquake records were compared with those resulted from the time history analysis of the original system. It is shown that the dynamic pushover analysis approach, specially, with the tri-linear approximation of the pushover curves, proves to have a better accuracy in assessing the target displacements. On the other hand, when nonlinear static procedure seems adequate, no specific preference is observed in using more complicated static procedures (proposed by codes) compared to the simple first mode target displacement assessment.
H. Behbahani, S.a. Sahaf,
Volume 5, Issue 3 (9-2007)
Abstract

The available methods for predicting mechanical characteristics of pavement layers are categorized into two general groups, Destructive and Non-destructive. In destructive method, using coring and pavement subgrade and performing necessary experiments on them, the quantities of layers properties will be identified. In Non-destructive method, the attained deflection is measured by applying the loading on pavement surface using equipments such as FWD which charges the impact dynamic load, and the mechanical characteristics of pavement layers are determined using back calculations. The procedure of conducting these calculations is that by knowing the thickness of the pavement layers and assuming the initial amounts for mechanical characteristics of the layer, the attained deflection at the desired points on the pavement surface will be calculated. Then, new figures are assumed for the characteristics of layers in a reattempt and calculations are repeated again. This trial and error is continued until the produced basin deformations from the calculations with true value, differs in an acceptable range. Using this method may have no accurate and single answer, since the various compositions of layers characteristics can produce similar deformations in different points of pavement surface. In this article, using an innovative method, a measurement is taken in constructing and introducing a mathematical model for determining the elastic module of surface layer using deflections attained from FWD loading equipment. The procedure is such that by using dynamic analysis software of finite elements like ABAQUS and ANSYS, the deformation of corresponding points on the surface of the pavement will be attained by FWD loading equipment. This analysis will be performed on a number of pavements with different thicknesses and different layers properties. The susceptibility analysis of different points deformations show, which will be performed as a result of the change of properties and layers thicknesses. Using this artificial data base as well as deflection basin parameters (DBP), a measurement will be taken toward constructing a regression model for determination of asphalt layer model, i.e. Eac =f(DBP) function shall be attained. To achieve the maximum correlation coefficient, an attempt is made to use the parameters of deformations basin which has the most susceptibility in changing asphalt layer module.
Mehdi Poursha, Faramarz Khoshnoudian, Abdoreza S. Moghadam,
Volume 6, Issue 2 (6-2008)
Abstract

The nonlinear static pushover analysis technique is mostly used in the performance-based design of structures and it is favored over nonlinear response history analysis. However, the pushover analysis with FEMA load distributions losses its accuracy in estimating seismic responses of long period structures when higher mode effects are important. Some procedures have been offered to consider this effect. FEMA and Modal pushover analysis (MPA) are addressed in the current study and compared with inelastic response history analysis. These procedures are applied to medium high-rise (10 and 15 storey) and high-rise (20 and 30 storey) frames efficiency and limitations of them are elaborated. MPA procedure present significant advantage over FEMA load distributions in predicting storey drifts, but the both are thoroughly unsuccessful to predict hinge plastic rotations with acceptable accuracy. It is demonstrated that the seismic demands determined with MPA procedure will be unsatisfactory in nonlinear systems subjected to individual ground motions which inelastic SDF systems related to significant modes of the buildings respond beyond the elastic limit. Therefore, it’s inevitable to avoid evaluating seismic demands of the buildings based on individual ground motion with MPA procedure.
S.h. Ebrahimi, S. Mohammadi, A. Asadpoure,
Volume 6, Issue 3 (9-2008)
Abstract

A new approach is proposed to model a crack in orthotropic composite media using the extended finite element method (XFEM). The XFEM uses the concept of partition of unity in addition to meshless basic idea of approximating a field variable by its values at a set of surrounding nodes. As a result, higher order approximations can be designed with the same total number of degrees of freedom. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore mesh generating is performed without any consideration of crack conformations for elements and the method has the ability of extending the crack without any remeshing. Furthermore, the type of elements around the cracktip is the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Developed orthotropic enrichment functions are further modified to enable modeling isotropic problems.
M.a. Goudarzi, S.r. Sabbagh-Yazdi,
Volume 7, Issue 3 (9-2009)
Abstract

The main objective of this article is evaluation of the simplified models which have been developed for analysis and design of liquid storage tanks. The empirical formulas of these models for predicting Maximum Sloshing Wave Height (MSWH) are obtained from Mass Spring Models (MSM). A Finite Element Modeling (FEM) tool is used for investigating the behavior the some selected liquid storage tanks under available earthquake excitations. First, the results of FEM tool are verified by analyzing a liquid storage tank for which theoretical solution and experimental measurements are readily available. Then, numerical investigations are performed on three vertical, cylindrical tanks with different ratios of Height to Radius (H/R=2.6, 1.0 and 0.3). The behaviors of the tanks are initially evaluated using modal under some available earthquake excitations with various vibration frequency characteristics. The FEM results of modal analysis, in terms of natural periods of sloshing and impulsive modes period, are compared with those obtained from the simplified MSM formulas. Using the time history of utilized earthquake excitations, the results of response-history FEM analysis (including base shear force, global overturning moment and maximum wave height) are compared with those calculated using simplified MSM formulations. For most of the cases, the MSWH results computed from the time history FEM analysis demonstrate good agreements with the simplified MSM. However, the simplified MSM doesn’t always provide accurate results for conventionally constructed tanks. In some cases, up to 30%, 35% and 70% average differences between the results of FEM and corresponding MSM are calculated for the base shear force, overturning moment and MSWH, respectively.
D. P. Chen, C. X. Qian, C. L. Liu,
Volume 8, Issue 4 (12-2010)
Abstract

 Concrete deformation due to temperature and moisture condition will always develop simultaneously and interactively. The environmentally (hygral and thermally) induced stress and deformation are essential to concrete durability. To simulate the deformation of concrete caused by the coupling effect of temperature and moisture, a numerical simulation approach is proposed comprising analytical process and finite element analysis is proposed based on the mechanism of heat and moisture transfer in porous medium. In analytical method, Laplace transformation and transfer function were used to simplify and solve the coupled partial differential equations of heat and moisture transfer. The hygro-thermal deformation of concrete is numerically simulated by finite element method (FEM) based on the obtained temperature and moisture stress transformed from the solved moisture distribution. This numerical simulation approach avoids the complex eigenvalues, coupling difficulty and low accuracy in other solving method, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar FEM software. Furthermore, a software named Combined Temperature and Moisture Simulation System for concrete (CTMSoft) was represented and developed by a mix programming of Visual Basic, Matlab and ANSYS. CTMSoft provided a simple and more intuitive interface between user and computer by providing a graphical user interface (GUI). The validity of the numerical simulation approach was verified by two cases analysis.


A. R. Habibi, Keyvan Asadi,
Volume 12, Issue 1 (3-2014)
Abstract

Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
M. Afzalirad, M. Kamalian, M. K. Jafari, A. Sohrabi-Bidar,
Volume 12, Issue 1 (1-2014)
Abstract

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on site response are investigated.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract

The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
A. Eslami, I. Tajvidi, M. Karimpour-Fard,
Volume 12, Issue 1 (1-2014)
Abstract

Three common approaches to determine the axial pile capacity based on static analysis and in-situ tests are presented, compared and evaluated. The Unified Pile Design (UPD), American Petroleum Institute (API) and a SPT based methods were chosen to be validated. The API is a common method to estimate the axial bearing capacity of piles in marine environments, where as the others are currently used by geotechnical engineers. Seventy pile load test records performed in the northern bank of Persian Gulf with SPT profile have been compiled for methods evaluation. In all cases, pile capacities were measured using full scale static compression and/or pull out loading tests. As the loading tests in some cases were in the format of proof test without reaching the plunging or ultimate bearing capacity, for interpretation the results, offset limit load criteria was employed. Three statistical and probability based approaches in the form of a systematic ranking, called Rank Index, RI, were utilized to evaluate the performance of predictive methods. Wasted Capacity Index (WCI) concept was also applied to validate the efficiency of current methods. The evaluations revealed that among these three predictive methods, the UPD is more accurate and cost effective than the others.
A. Kaveh, M.s. Massoudi ,
Volume 12, Issue 2 (6-2014)
Abstract

Formation of a suitable null basis is the main problem of finite elements analysis via force method. For an optimal analysis, the selected null basis matrices should be sparse and banded corresponding to sparse, banded and well-conditioned flexibility matrices. In this paper, an efficient method is developed for the formation of the null bases of finite element models (FEMs) consisting of tetrahedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems (SESs) on these subgraphs. Two examples are presented to illustrate the simplicity and effectiveness of the presented graph-algebraic method.
Khaled Farah, Mounir Ltifi, Tarek Abichou, Hedi Hassis,
Volume 12, Issue 3 (7-2014)
Abstract

The purpose of this study is to compare the results of different probabilistic methods such as the perturbation method, Stochastic Finite Element Method (SFEM) and Monte Carlo Method. These methods were used to study the convergence of direct approach for slope stability analysis and are developed for a linear soil behavior. In this study, two dimensional random fields are used and both the First Order Reliability Method (FORM) and Limited Step Length Iteration Method (LSLIM) have been adopted to evaluate the reliability index. The study found that the perturbation method of the second order is easy to apply using the field’s theory because accuracy is reached even with different coefficients of variation of input variables, while the spectral finite element method yields accurate results only for high levels of solution development.
Jafar Najafizadeh, Mohsen Kamalian, Mohammad Kazem Jafari, Naser Khaji,
Volume 12, Issue 3 (7-2014)
Abstract

In this paper, an advanced formulation of the spectral finite element method (SFEM) is presented and applied in order to carry out site response analysis of 2D topographic structures subjected to vertically propagating incident in-plane waves in time-domain. The accuracy, efficiency and applicability of the formulation are demonstrated by solving some wave scattering examples. A numerical parametric study has been carried out to study the seismic response of rectangular alluvial valleys subjected to vertically propagating incident SV waves. It is shown that the amplification pattern of the valley and its frequency characteristics depend strongly on its shape ratio. The natural frequency of the rectangular alluvial valley decreases as the shape ratio of the valley decreases. The maximum amplification ratio along the ground surface occurs at the center of the valley. A simple formula has been proposed for making initial estimation of the natural period of the valley in site effect microzonation studies.
Z. Sabzi, A. Fakher,
Volume 13, Issue 1 (3-2015)
Abstract

Limitations in the design method used for the support systems of urban buildings make them vulnerable to damage by adjacent excavations. This paper examines a traditional system used to support excavation sites and adjacent buildings in which inclined struts are connected to the wall or foundation of the adjacent building. This method can be considered to be a type of shoring or underpinning. The performance of buildings and the criteria for deformation control during excavation are introduced. Next, a 2D finite element analysis is presented in which an excavation is modeled considering the parameters from the adjacent building and the inclined struts. The numerical model is capable of simulating the overall excavation and installation of the support system. The soil is modeled using an elastic perfectly-plastic constitutive relation based on the Mohr-Coulomb criterion. The finite element model is validated using Rankine earth pressure and in situ data was measured during an excavation. The effect of different variables on performance and acceptable limits for the inclined strut are discussed. The model used for the parametric study shows the influence of the characteristics of the adjacent building, soil parameters, geometry of excavation, type of excavation and effect of strut installation. It was found that one type of strut arrangement produced the best possible result. The results can be used as a primary approximation of small-to-medium depth excavations in which struts are used to reduce the deflections.
L. Kalani Sarokolayi, B. Navayi Neya, Javad Vaseghi Amiri,
Volume 13, Issue 1 (3-2015)
Abstract

This study focuses on non-linear seismic response of a concrete gravity dam subjected to translational and rotational correlated components of ground motions including dam-reservoir interaction. For this purpose rotational components of ground motion is generated using Hong Non Lee improved method based on corresponding available translational components. The 2D seismic behavior of the dam concrete is taken into account using nonlinear fracture mechanics based on the smeared- crack concepts and the dam-reservoir system are modeled using Lagrangian-Lagrangian approach in finite element method. Based on presented formulation, Pine Flat concrete gravity dam is analyzed for different cases and results show that the rotational component of ground motion can increase or decrease the maximum horizontal and vertical displacements of dam crest. These results are dependent on the frequency of dam-reservoir system and predominant frequencies of translational and rotational components of ground motion.
R. Tarinejad, S. Pirboudaghi,
Volume 13, Issue 2 (6-2015)
Abstract

It is well-known that dam-reservoir interaction has significant effects on the response of dams to the earthquakes. This phenomenon should be considered more exactly in the seismic design of dams with a rational and reliable dynamic analysis method. In this research, seismic analysis of the dam-reservoir is studied as a wave propagation problem by using Legendre Spectral element method (SEM). The special FEM and SEM codes are developed to carry out the seismic analysis of the dam-reservoir interaction system. The results of both SEM and FEM models are compared considering the accuracy and the time consumption of the analysis. Attractive spectral convergence of SEM is obtained either by increasing the degree of the polynomials in the reservoir or by the number of elements of dam. It is shown that all boundary conditions of the reservoir domain in the SEM are evaluated by the exact diagonal matrices. The SEM leads to the diagonal mass matrix for both dam and reservoir domains. The stiffness matrices obtained from the SEM are more sparse than the corresponding stiffness matrices in the FEM consequently the SEM needs a significant less time consumption of the analysis.



Page 1 from 2    
First
Previous
1
 

© 2020 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb