Search published articles

Showing 4 results for Experimental Model

S. N. Moghaddas Tafreshi, Gh. Tavakoli Mehrjardi, M. Ahmadi,
Volume 9, Issue 4 (12-2011)

The results of laboratory model tests and numerical analysis on circular footings supported on sand bed under incremental

cyclic loads are presented. The incremental values of intensity of cyclic loads (loading, unloading and reloading) were applied

on the footing to evaluate the response of footing and also to obtain the value of elastic rebound of the footing corresponding

to each cycle of load. The effect of sand relative density of 42%, 62%, and 72% and different circular footing area of 25, 50,

and 100cm2 were investigated on the value of coefficient of elastic uniform compression of sand (CEUC). The results show that

the value of coefficient of elastic uniform compression of sand was increased by increasing the sand relative density while with

increase the footing area the value of coefficient of elastic uniform compression of sand was decreases. The responses of footing

and the quantitative variations of CEUC with footing area and soil relative density obtained from experimental results show a

good consistency with the obtained numerical result using “FLAC-3D”.

H. Ghiassian, M. Jalili, I. Rahmani, Seyed M. M. Madani,
Volume 11, Issue 4 (12-2013)

The concept of Geosynthetic Cellular Systems (GCS) has recently emerged as a new method in construction of breakwaters and coastal protective structures. The method potentially has significant advantages compared to conventional systems from the standpoint of constructability, cost effectiveness, and environmental considerations. This paper presents the results of physical model testing on the hydraulic responses of GCS structures under wave action. A series of model tests were carried out in a wave flume on GCS models with different shapes and soil types, subjected to various wave characteristics. Horizontal wave forces acting on the models were measured at different elevations. The maximum horizontal force in each test was calculated and compared with conventional formula of predicting wave pressure on breakwaters. The results show that Goda’s equation overestimates the hydrodynamic water pressure on these structures. This can be attributed to the influence of seeping water through the GCS models because of relative permeability of the GCS.
S. Raut, R. Ralegaonkar, S. Mandavgane,
Volume 12, Issue 4 (12-2014)

Accumulation of unmanaged industrial solid waste, especially in developing countries has resulted in an increased environmental concern. In view of utilization of industrial solid waste the recycled paper mill waste (RPMW) – cement composite bricks were designed and developed. In order to investigate the environmental performance of sustainable construction materials two small scale model houses were designed and developed with waste-create (RPMW – cement) bricks and commercially available fly ash bricks as per the standards. In order to assess the thermal comfort for the considered sustainable building materials the temperature inside the model houses were monitored over the study location for the period of a year. The economic viability for the developed model houses was also analyzed. The recorded south facade exposed wall surface temperature readings for the developed small-scale model houses were used to estimate the thermal conduction of wall assembly. The detailed analysis revealed that the developed waste-create brick model house was more thermally comfortable and economical than fly ash brick model house. The better thermal performance capacity of the waste-create brick model house can drive the construction of energy efficient building so as to minimize energy consumption through the reduction of the thermal load of the built environment. The developed low cost sustainable construction material enhances the practical feasibility of the product as well.
Sohrab Karimi, Hossein Bonakdari, Azadeh Gholami, Amir Hossein Zaji,
Volume 15, Issue 2 (3-2017)

Dividing open channels are varied types of open channel structures used to provide water for irrigation channels, agriculture and wastewater networks. In the present study the mean velocity is calculated in different dividing angles within the branches channel through the use of artificial Neural Network (ANN) and coputational fluid dynamices (CFD) models. First the ANSYS-CFX model is used to simulate the flow pattern within the branch with a 90° angle. The results of the CFX model correspond fairly well to the results of the experimental model with Mean Absolute Percentage Error (MAPE) of 5%. After verifying, two CFX model are generated in 30° and 60° angle in different width ratios of 0.6, 0.8, 1, 1.2, and 1.4, and the mean velocities are obtained by flowmeter. Following that ANN model trained and tested through the use of a set of experimental and CFX datas. The comparison showed that the ANN model has an acceptable level of accuracy in predicting the dividing open channel mean flow velocity with mean value R2 of 0.93. Comparing the results indicated that ANN model with the MAPE of 1.8% performs better in 0.8 m width ratio. Also, in this width ratio the MAPE are equal to 1.58, 1.87, and 2.04 % in 30°, 60°, and 90° deviation angles respectively and therefore the model performs better in 30° angle.

Page 1 from 1     

© 2020 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb