Search published articles


Showing 6 results for Cone Tip Resistance

Baziar M.h., Ziaie Moayed R.,
Volume 1, Issue 1 (9-2003)
Abstract

An experimental study was carried out to evaluate the influence of silt content on cone penetration measurements and its implication for soil classification. The investigation includes twenty-seven peizocone tests in saturated salty sand samples, which had been prepared in a big rigid thick walled steel cylinder-testing chamber. The samples were prepared with several different silt contents ranging from 0 to 50 percent and were consolidated at three-overburden effective stresses including 100, 200 and 300 kPa. This study showed that, the amount of silt content in sand is an important parameter affecting CPT results. As the silt content increases, the cone tip resistance decreases. The recorded excess pore water pressure during sounding was increased with increasing silt content. It is also concluded that friction ratio, in general, increases with increasing silt content. The method presented by Robertson and Wride [25] and Olsen [17] to evaluate soil classification are also verified.
Baziar M.h., Asna Ashari M.,
Volume 2, Issue 3 (9-2004)
Abstract

An experimental study was carried out to evaluate the liquefaction resistance of silty sand utilizing laboratory techniques. In this study, liquefaction potential of silty sand by using cyclic triaxial tests on frozen samples retrieved from calibration chamber and constructed samples by dry pouring method were investigated. Correlation between cone penetration resistance and cyclic strength of undisturbed silty sand samples are also examined using CPT calibration chamber and cyclic triaxial tests. The cone penetration tests were performed on silty sand samples with fine contents ranging from 0% to 50% and overburden stresses in the range of 100-300 kPa. Then the soil sample in calibration chamber, in the same way that soil samples were prepared during CPT sounding, was frozen and undisturbed soil specimen retrieved from frozen soil sample were tested using cyclic triaxial tests. Analysis of results indicates that the quality of frozen samples is affected by fine content and overburden pressures. Also, using data obtained in this research, the relationship between cone tip resistance and cyclic resistance ratio (CRR) for silty sand soils will be presented. These correlations are in relatively good agreement with field case history data. Also increasing confining pressure in silty sand material increases the cone tip resistance and generally, cyclic resistance ratio increases by increasing silt content.
M.h. Baziar, R. Ziaie_moayed,
Volume 4, Issue 2 (6-2006)
Abstract

This paper highlights the effect of silt content on cone tip resistance in loose silty sand. In this study, twenty-seven cone penetration tests are performed in saturated silty sand samples with several different silt contents ranging from 10 to 50 percent. The samples are consolidated at three overburden stresses including 100, 200 and 300 kPa. It is shown that, as the silt content increases, the cone tip resistance decreases. In high percent of silt (30-50%), the cone tip resistance decreases more gently compared with low percent of silt (0-30%). It is also concluded that the method proposed by Olsen (1997) for stress normalization of cone tip resistance compared with the Robertson and Wride (1998) method has better agreement with the obtained results. To evaluate liquefaction potential of loose silty sand, the method presented by Robertson and Wride (1998) is also studied. The results showed that the use of Robertson and Wride (1998) method to estimate the fine content from CPT data causes some uncertainty especially for high silt content (FC>30%).
S.a. Naeini, R. Ziaie-Moayed,
Volume 5, Issue 2 (6-2007)
Abstract

Series of undrained monotonic triaxial tests and cone penetration tests were conducted on loose silty sand samples to study correlation between undrained shear strength of silty sands (Sus) and piezocone test results. CPT tests were conducted at 27 silty sand samples in calibration chamber. The results indicate that, in low percent of silt (0-30%), as the silt content increases, the undrained shear strength (Sus) and cone tip resistance (qc) decreases. It is shown that, fines content affects undrained shear strength (Sus) and cone tip resistance (qc) similarly. On the basis of obtained results, equations were proposed to determine the normalized cone tip resistance (qc1n) and undrained shear strength (Sus) of silty sand in term of fines content. Finally based on those equations, a correlation between normalized cone tip resistance and undrained shear strength of silty sand is presented. It is shown that the normalized undrained shear strength and normalized cone tip resistance of loose silty sands (F.C. <30%) decreases with increase of silt contents.
A. Eslami Kenarsari, R. Jamshidi Chenari, A. Eslami,
Volume 11, Issue 1 (5-2013)
Abstract

Among the different ways of in-situ soil investigation, cone penetration test data are selected to evaluate the spatial variability

of geomaterials and the scale of fluctuations is chosen to evaluate the correlation structure of CPT data. In this regard six case

studies in sandy materials from Australia, U.S.A. and Iraq are selected. Various techniques for the calculation of the scale of

fluctuation of geotechnical parameters are suggested in literature e.g. VXP, SAI, AMF, BLM and VRF without any preference or

privilege for any specific procedure. In order to isolate the stochastic portion of cone tip resistance, deterministic trend was first

removed by regression analysis. This study suggests that quadratic trend removal is more suitable for selected CPT data

soundings. The closeness of the estimated scale of fluctuation using different approaches is assessed too. Mean value of the scale

of fluctuation by five established methods ranges between 0.44 to 1.52 meter for six different cases and the coefficient of

variation for the scale of fluctuation calculated by these methods varies between 12 to 27 % showing that available established

methods produce almost compatible and comparable results.


R. Jamshidi Chenari, P. Pishgah ,
Volume 12, Issue 2 (4-2014)
Abstract

In this technical note, a methodology is introduced for reliability calculation of consolidation settlement based on cone penetration test (CPT) data. The present study considers inherent soil variability which influences consolidation settlements results. To proceed reliability analysis, the measured data of a sample corrected cone tip resistance (􀝍􀯧) is detrended using a quadratic trend and the residuals are assumed to be lognormally distributed random field. Realizations of 􀝍􀯧 is generated by using spatial variability of residuals including standard deviation and the scale of fluctuation. The quadratic trend and the generated residuals are then combined to correlate shear and bulk modulus as input consolidation properties for coupled analysis and subsequently consolidation settlement was calculated by using finite difference method adopted in Monte Carlo simulations. The results of reliability analysis are presented describing the range of possible settlements by considering characteristics of uncertainties involved at the particular site. Number of realizations rendering settlements smaller than the allowable settlement must be such that guarantee proper performance or acceptable reliability index.

Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb