Search published articles


Showing 51 results for Arma

Misaghi F., Mohammadi K., Mousavizadeh M.h.,
Volume 1, Issue 1 (9-2003)
Abstract

In the present paper, ANN is used to predict the tidal level fluctuations, which is an important parameter in maritime areas. A time lagged recurrent network (TLRN) was used to train the ANN model. In this kind of networks, the problem is representation of the information in time instead of the information among the input patterns, as in the regular ANN models. Two sets of data were used to test the proposed model. San Francisco Bay tidal levels were used to test the performance of the model as a predictive tool. The second set of data was collected in Gouatr Bay in southeast of Iran. This data set was used to show the ability of the ANN model in predicting and completing of data in a station, which has a short period of records. Different model structures were used and compared with each other. In addition, an ARMA model was used to simulate time series data to compare the results with the ANN forecasts. Results proved that ANN can be used effectively in this field and satisfactory accuracy was found for the two examples. Based on this study, an operational real time environment could be achieved when using a trained forecasting neural network.
Ghodrati Amiri G., Sedighi S.,
Volume 2, Issue 4 (12-2004)
Abstract

In the past decade design procedure changed to �performance-based design� from�force-based design�, by this mean many researchers focused on nonlinear static analysis (NSA)and the procedure named �PUSHOVER�. Advantages of this method are defining the inelasticbehavior of structure without nonlinear dynamic analysis (NDA) effort and also defining plastichinges formation in critical elements, and the order of formed plastic hinges. In spite of these goodadvantages NSA is limited to short and planar structures and application of that in tall andtorsionaly asymmetric structures may yield unreliable results.In this study reliability of NSA is investigated by performing both nonlinear static and dynamicanalysis on six 2D moment resisting concrete frames. Non linear dynamic analysis has been doneby the suggested method in FEMA356 guideline called �Target Displacement Method�. A groupof 4 different lateral increasing loads were used in pushover analysis and 3 different groundmotions were applied in NDA. Results indicate that same responses can be obtained by performingNSA, but errors will be increased by frames height increment.
Kaveh A., Shahrouzi M.,
Volume 3, Issue 3 (9-2005)
Abstract

Genetic Algorithm is known as a generalized method of stochastic search and has been successfully applied to various types of optimization problems. By GA s it is expected to improve the solution at the expense of additional computational effort. One of the key points which controls the accuracy and convergence rate of such a process is the selected method of coding/decoding of the original problem variables and the discrete feasibility space to be searched by GAS. In this paper, a direct index coding (DIC) is developed and utilized for the discrete sizing optimization of structures. The GA operators are specialized and adopted for this kind of encoded chromosomes and are compared to those of traditional GA S. The well-known lO-bar truss example from literature is treated here as a comparison benchmark, and the outstanding computational efficiency and stability of the proposed method is illustrated. The application of the proposed encoding method is not limited to truss structures and can also be directly applied to frame sizing problems.
A. Allahverdi, B. Shaverdi, E. Najafi Kani,
Volume 8, Issue 4 (12-2010)
Abstract

:The aim of this work is to investigate the influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast furnace slag from Isfahan steel plant. The silica modulus (SiO2/Na2O) of activator was adjusted at 0.6 and a number of mixes were designed in such a way to contain different levels of sodium oxide including 1, 2, 3, 4, 5, and 6% by weight of dry slag. The most important physico-mechanical properties of the pastes including workability, initial and final setting times, 28-day compressive strength and efflorescence severity were measured. Suitable mixes were chosen for more studies including compressive strength at different ages, 90-day autogenous and drying shrinkages. According to the results, increasing the sodium oxide content of the mixes results in increased workability, reduced setting times, and higher compressive strength. The results confirm the possibility of achieving 28-day compressive strengths up to 27.5, 50.0 and 70.0 MPa for mixes with sodium oxide content of 1, 2 and 3 wt% respectively. The measured values for autogenous shrinkage were all less than 0.1% and SEM studies showed a significant decrease in pore sizes with increasing sodium oxide concentration from 1 to 2%.


Rouzbeh Dabiri, Faradjollah Askari, Ali Shafiee, Mohammad Kazem Jafari,
Volume 9, Issue 2 (6-2011)
Abstract

Laboratory data, which relate the liquefaction resistance of Firoozkooh sand and non-plastic silt mixtures to shear wave velocity are

presented and compared to liquefaction criteria derived from seismic field measurements by Andrus and Stokoe [1]. In the work

described herein, cyclic triaxial and resonant column tests were conducted on specimens of clean sand and sand-silt mixtures with silt

content up to 60%, prepared at different densities. Cyclic undrained strength and small strain shear wave velocity were determined

for identical specimens formed by undercompaction method. It was found that silt content affects cyclic resistance and shear wave

velocity. In addition, the laboratory results indicated that using the existing field-based correlations will overestimate the cyclic

resistance of the Firoozkooh sand-silt mixtures when silt content is 60%. For clean sand and the specimens containing up to 30% fines,

results of this study on cyclic resistance are fairly consistent with Andrus and Stokoe correlations. These findings suggest the need for

further evaluation of the effects of non-plastic fines content upon liquefaction criteria derived from seismic field measurements.


Mohammad Hassan Baziar, Habib Shahnazari, Hassan Sharafi,
Volume 9, Issue 2 (6-2011)
Abstract

This paper discusses the applicability of a simple model to predict pore water pressure generation in non-plastic silty soil during

cyclic loading. Several Stress-controlled cyclic hollow torsional tests were conducted to directly measure excess pore water pressure

generation at different levels of cyclic stress ratios (CSR) for the specimens prepared with different silt contents (SC=0% to 100%).

The soil specimens were tested under three different confining pressures (&sigma'3= 60, 120, 240 kPa) at a constant relative density

(Dr=60%), with different silt contents. Results of these tests were used to investigate the behavior of silty sands under undrained

cyclic hollow torsional loading conditions. In general, beneficial effects of the silt were observed in the form of a decrease in excess

pore water pressure and an increase in the volumetric strain. Modified model for pore water pressure generation model based on

the test results are also presented in this paper. Comparison of the proposed pore pressure build up model with seed’s model

indicates the advantage of proposed model for soil with large amount of silt.


Mostafa Khanzadi, Seyed Mehdi Tavakkoli,
Volume 9, Issue 3 (9-2011)
Abstract

An evolutionary structural optimization (ESO) method is used for plastic design of frames. Based on safe theorems some criteria are derived and made an effort to satisfy them during the optimization process. In this regard, equilibrium is checked and yield condition is gradually satisfied during the optimization process. In this method, the amount of used material and the stiffness for each element are improved, simultaneously, to impose upper bound of moment in the element. Frame analysis and optimization algorithm are implemented as PLADOF (PLAstic Design of Frames) computer code. Four examples are presented to illustrate the performance of the algorithm


M. Miraboutalebi, F. Askari, O. Farzaneh,
Volume 9, Issue 4 (12-2011)
Abstract

In this paper, the effect of bedrock inclination on seismic performance of slopes is investigated. The study was conducted based

on dynamic analysis of different slopes, evaluation of the earthquake acceleration in sliding mass, and calculating the

permanent displacement of the slope, using Newmark sliding block. The investigation indicates that variation of the bedrock

inclination may cause the acceleration magnitude and the displacement in the sliding mass to reach to their maximum level.

This may happen in conditions that the mean period of the acceleration time history on failure surface (Tmt) and the

predominant period of the slope (Ts ) are close to each other. Typical results are presented and discussed. A two dimensional

model of a typical slope was considered and conducting dynamic analyses, the slope performance was studied for different

geometries, strength parameters and shear wave velocities. Such a performance has been studied by assessing the record of

acceleration in sliding mass (the mass above the critical sliding surface) and calculating the slope displacement using Newmark

method. It is shown that neglecting the effect of bedrock inclination, would lead to non-real results in assessing the seismic slope

performance.


M. Hassanlourad, H. Salehzadeh, H. Shahnazari,
Volume 9, Issue 4 (12-2011)
Abstract

The effects of cementation and the physical properties of grains on the shear behavior of grouted sands are investigated in this

paper. The consolidated-undrained triaxial shear behavior of three grouted carbonate sands with different physical properties,

including particle size distribution, particle shape and void ratio, was studied. Two sands were obtained from the north shores

of the Persian Gulf, south of Iran, called Hormoz and Kish islands sands, and one sand was obtained from the south beaches

of England and called Rock beach sand. The selected sands were grouted using a chemical grout of sodium silicate and tested

after one month of curing. Test results showed that the effect of bonding on the shear behavior and strength depends on the bond

strength and confining pressure. In addition, the shear behavior, yield strength and shear strength of grouted sands under

constant conditions, including the initial relative density, bonds strength, confining pressure and loading, were affected by the

physical properties of the sands. Furthermore, the parameters of the Mohr-Coulomb shear strength failure envelope, including

the cohesion and internal friction angle of grouted sands under constant conditions, were affected by the physical properties

and structure of the soils.


A. Hassanipour, A. Shafiee, M.k. Jafari,
Volume 9, Issue 4 (12-2011)
Abstract

Shear modulus and damping ratio are important input parameters in dynamic analysis. A series of resonant column tests was

carried out on pure clays and sand-clay mixtures prepared at different densities to investigate the effects of aggregate content,

confining stress, void ratio and clay plasticity on the maximum shear modulus and minimum damping ratio. Test results revealed

an increase in the maximum shear modulus of the mixture with the increase in sand content up to 60%, followed by a decrease

beyond this value. It was also found that the maximum shear modulus increases with confining stress, and decreases with void

ratio. In addition, minimum damping ratio increases with sand content and clay plasticity and decreases with confining stress.

Finally, on the basis of the test results, a mathematical model was developed for the maximum shear modulus.


H. Behbahani, H. Yaghoubi, M. A. Rezvani,
Volume 10, Issue 1 (3-2012)
Abstract

Magnetic levitation (maglev) is amongst the most advanced technologies that are available to the transportation industries. It

has already been noticed by decision makers in many countries around the globe. Contrary to such high levels of interest, there

are no practical algorithms available to the engineers and/or managers to assist them in analyzing economics of the maglev

systems. Therefore, it has been the purpose of this research to find appropriate answers to such vital questions and also investigate

feasibility for practical use of maglev technology in rapid transit systems. The life cycle costs (LCC) for the maglev system

including the cost of initiating such projects are included in this survey and are evaluated. To serve the purpose, an algorithm is

presented that facilitates the technical and economical analyses of maglev systems. The proposal for a long distance maglev

system, Mashhad-Tehran (M-T), is used as a case study by using the proposed algorithm. Moreover, the cost of establishing and

operating M-T project is estimated by two other different approaches. These include the already established mathematically based

cost estimating method, and the cost estimations based on the international norms and standards. These standards are based on

statistical (or provided) data. Such cost estimations assist verification of the proposed algorithm. Comparisons between outcomes

of the three methods prove close agreement for the cost estimation by all of them. It is concluded that the proposed algorithm for

implementation and operation of maglev route is practical.


A. Kaveh, A. Shakouri Mahmud Abadi, S. Zolfaghari Moghaddam,
Volume 10, Issue 1 (3-2012)
Abstract

This paper presents a strategy for using Harmony Search algorithm in facility layout optimization problems. In this paper an

adapted harmony search algorithm is developed for solving facility layout optimization problems. This method finds an optimal

facility arrangement in an existing layout. Two real-world case studies are employed to demonstrate the efficiency of this model.

A comparison is also made to illustrate the efficiency of these strategies in facility layout optimization


A. Kaveh, H. Nasr Esfahani,
Volume 10, Issue 1 (3-2012)
Abstract

In this paper the conditional location problem is discussed. Conditional location problems have a wide range of applications

in location science. A new meta-heuristic algorithm for solving conditional p-median problems is proposed and results are

compared to those of the previous studies. This algorithm produces much better results than the previous formulations.


J. Jalili, M. K. Jafari, A. Shafiee, J. Koseki, T. Sato,
Volume 10, Issue 2 (6-2012)
Abstract

A series of tests and also numerical analyses were conducted to explore the mechanical behavior of a mixture of coarse gravelsize
particles floating in a matrix of silt, sand or clay. The research is a step forward in an ongoing investigation on behavior of
composite clay, which is used as the core material of some large embankment dams all over the world. After providing the reader
with an overall image about behavior of such materials through the literature, the paper focuses on a predominant feature of the
composite soil behavior: increase of non-deformable solid inclusions in a mixture leads to formation of heterogeneity of stress
field, excess pore water pressure and strain distribution along the specimens. This paper mainly probes formation of such
heterogeneity by the aid of special experiments and also numerical analyses. In addition to loading details, it is clarified through
the paper that position of inclusions relative to loading direction also affects heterogeneity of stress/strain and excess pore water
pressure distribution through the mixture. Despite the former, the latter redistributes with a rate proportional to material
hydraulic conductivity.


N. Shariatmadari, S. Saeidijam,
Volume 10, Issue 2 (6-2012)
Abstract

Bentonite-sand mixture is one of the most important candidates for engineering buffer element in nuclear waste repositoriesso
the analysis of its thermo-hydro-mechanical behavior is important for design purposes.An innovative setup of classic oedometer
was used for swelling and compression study at high temperatures in this research. A fully calibration program was utilized to
include high temperature effects on measurements. This research shows that the elevation of temperature from 25 to 90◦C in
1:1bentonite-sand mixture in distilled water reduces free swelling potential and strain about 20 percent. The required time for
equalization of swelling is less in high temperature due to increasing in permeability. Also, the high temperature causes increasing
in compressibility rate and quantity for this buffer. For detection of this effect, XRD analysis showed that an increase in
temperature causes a decrease in basal spacing. So, the particles can come near to each other more than lower temperatures and
the amount of absorbed water in the microstructure of the clay is smaller.The effect of thermal history on behavior of bentonitesand
mixture has been showed and tried to clarify it. At similar stress-temperature states, thermal history causes different
deformation in samples. The highest temperature that bentonite has been experienced, controls its behavior in the next thermal
cycles.


A. Kaveh, O. Sabzi,
Volume 10, Issue 3 (9-2012)
Abstract

In this paper a discrete Big Bang-Big Crunch algorithm is applied to optimal design of reinforced concrete planar frames under

the gravity and lateral loads. Optimization is based on ACI 318-08 code. Columns are assumed to resist axial loads and bending

moments, while beams resist only bending moments. Second-order effects are also considered for the compression members, and

columns are checked for their slenderness and their end moments are magnified when necessary. The main aim of the BB-BC

process is to minimize the cost of material and construction of the reinforced concrete frames under the applied loads such that

the strength requirements of the ACI 318 code are fulfilled. In the process of optimization, the cost per unit length of the sections

is used for the formation of the subsequent generation. Three bending frames are optimized using BB-BC and the results are

compared to those of the genetic algorithm.


H. Famili, M. Khodadad Saryazdi, T. Parhizkar,
Volume 10, Issue 3 (9-2012)
Abstract

Self-desiccation is the major source of autogenous shrinkage and crack formation in low water-binder ratio (w/b) concretes

which can be reduced by internal curing. In this paper performance of high strength self consolidating concrete (HS-SCC) with

w/b of 0.28 and 0.33 including autogenous shrinkage, drying shrinkage, compressive strength, and resistance to freezing-thawing

was investigated. Then, for the purpose of internal curing, 25% of normal weight coarse aggregate volume was replaced with

saturated lightweight aggregate (LWA) of the same size and its effects on the material properties was studied. Two modes of

external curing, moist and sealed, were applied to test specimens after demoulding. Autogenous shrinkage from 30 minutes to 24

hours after mixing was monitored continuously by a laser system. The initial and final setting time were manifested as a change

of the slope of the obtained deformation curves. Shrinkage after initial setting was 860 and 685 microstrain (&mu&epsilon) for 0.28 and 0.33

w/b mixtures, respectively. The saturated LWA reduced these values to 80 and 295 &mu&epsilon, respectively. By LWA Substitution the 28-

day compressive strength of 0.28 w/b mixture was reduced from 108 to 89 and 98 to 87 MPa for moist and sealed cured specimen,

respectively. The corresponding values for 0.33 w/b mixture was 84 to 80 and 82 to 70 MPa. Shrinkage of 0.28 w/b mixture

without LWA after moist and sealed cured specimen dried for 3 weeks was about 400 &mu&epsilon. Shrinkage of moist and sealed cured

specimen containing LWA was reduced 9% and 25%, respectively. On the contrary for 0.33 w/b mixture an increase was noticed.

Freezing-thawing resistance was improved by sealed curing, decreasing w/b and substituting LWA.


M. Davoodii, M. K. Jafari, S. M. A. Sadrolddini,
Volume 11, Issue 1 (5-2013)
Abstract

Spatial Variation of Earthquake Ground Motion (SVEGM) is clearly indicated in data recorded at dense seismographic arrays

The main purpose of this paper is to study the influence of SVEGM on the seismic response of large embankment dams. To this

end, the Masjed Soleyman embankment dam, constructed in Iran is selected as a numerical example. The spatially varying ground

motion time histories are generated using spectral representation method. According to this methodology, the generated time

histories are compatible with prescribed response spectra and reflect the wave passage and loss of coherence effects. To

investigate the sensitivity of the dam responses to the degree of incoherency, three different coherency models are used to simulate

spatially variable seismic ground motions. Finally, the seismic response of the dam under multi-support excitation is analyzed

and compared to that due to uniform ground motion. Also, the Newmark's method is used to estimate seismic-induced permanent

displacements of the embankment dam. The analysis results reveal that the dam responses can be sensitive to the assumed spatial

variation of ground motion along its base. As a general trend, it is concluded that the use of multi-support excitation, which is

more realistic assumption, results in lower acceleration and displacement responses than those due to uniform excitation.


H. Alielahi, M. Kamalian, J. Asgari Marnani, M. K. Jafari, M. Panji,
Volume 11, Issue 1 (5-2013)
Abstract

In this paper, an advanced formulation of a time-domain two-dimensional boundary element method (BEM) is presented and

applied to calculate the response of a buried, unlined, and infinitely long cylindrical cavity with a circular cross-section subjected

to SV and P waves. The applicability and efficiency of the algorithm are verified with frequency-domain BEM examples of the

effect of cylindrical cavities on the site response analysis. The analysis results show that acceptable agreements exist between

results of this research and presented examples. For a shallow cavity, the numerical results demonstrate that vertically incident

SV wave reduces the horizontal components of the motion on the ground surface above the cavity, while it significantly increases

the vertical component for a dimensionless frequency (&eta) of 0.5 and h/a=1.5. The maximum values of normalized displacements

in vertical component of P waves are larger than horizontal component of SV waves for &eta=1.0. For a deeply embedded cavity,

the effect of the cavity on the surface ground motion is negligible for incident SV wave, but it increases the vertical component of

the displacement for incident P wave. Additionally, far and near distances from the center of the cavity show different amplitude

patterns of response due to the cavity effect. Increasing the distance from the center of the cavity, the amplitude of displacement

and the effect of the cavity attenuates significantly.


A. Shariat Mohaymany, M. Babaei,
Volume 11, Issue 1 (3-2013)
Abstract

Since the 1990’s, network reliability has been considered as a new index for evaluating transportation networks under uncertainty. A large number of studies have been revealed in the literature in this field, which are mostly dedicated to developing relevant measures that can be utilized for the evaluation of vulnerable networks under different sources of uncertainty, such as daily traffic flow fluctuations, natural disasters, weather conditions, and so fourth. This paper addresses the resource allocation problem in vulnerable transportation networks, in which multiple performance reliability measures should be met at their desired levels, while the overall cost of upgrading links’ performances should be minimized simultaneously. For this purpose, a new approach has been considered to formulate the two well-known performance measures, connectivity and capacity reliability, along with their application in a bi-objective nonlinear mixed integer goal programming model. In order to take into account the uncertain conditions of supply, links’ capacities have been assumed to be random variables and follow normal distribution functions. A computationally efficient method has been developed that allows calculating the network-wise performance indices simply by means of a set of functions of links’ performance reliabilities. Using this approach, as the performance reliability of links are themselves functions of the random links’ capacities, they can be simply calculated through numerical integration. To achieve desirable levels for both connectivity reliability and capacity reliability (as network-wise performance reliability measures) two distinct objectives have been considered. One of the objectives seeks to maximize each of the measures regardless of what is happening to the other objective function which minimizes the budget. Since optimization models with two conflicting objectives cannot be solved directly, the well-known goal attainment multi-objective decision-making (MODM) approach has been adapted to formulate the model as a single objective model. Then the resultant single objective model has been solved through the generalized gradient method, which is a straightforward solution algorithm coded in existing commercial software such as MATLAB programming software. To show the applicability of the proposed model, numerical results are provided for a simple network. Also, to show the sensitiveness of the model to decision maker’s direction weights, the results of sensitivity analysis are presented..

Page 1 from 3    
First
Previous
1
 

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb